Thu gọn và sắp xếp các hạng tử của đa thức theo lũy thừa giảm dần của biến: P(x)=x3+2x2+2
P(1)=13+2.12+2=1+2+2=5
P(-1)=(-1)3+2.(-1)2+2=(-1)+2+2=3
Thu gọn và sắp xếp các hạng tử của đa thức theo lũy thừa giảm dần của biến: P(x)=x3+2x2+2
P(1)=13+2.12+2=1+2+2=5
P(-1)=(-1)3+2.(-1)2+2=(-1)+2+2=3
Cho 2 đa thức: P(x)= 2x4 + 3x3 + 3 - 3x2 + 3x + 4x2 - x4 - x
Q(x)= x4 - 2x + 4 + x3 + 3x2 + 4x - 2 - x2
a, Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm dần của biến
b, Tính P(x) + Q(x) , P(x) - Q(x)
Bài 1. Cho hai đa thức:
P(x) = 2x4 + 3x3 + 3x2 - x4 - 4x + 2 - 2x2 + 6x
Q(x) = x4 + 3x2 + 5x - 1 - x2 - 3x + 2 + x3
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm
dần của biến.
b) Tính. P(x) + Q (x), P(x) - Q(x), Q(x) - P(x).
Bài 2. Cho hai đa thức:
P(x) = x5 + 5 - 8x4 + 2x3 + x + 5x4 + x2 - 4x3
Q(x) = (3x5 + x4 - 4x) - ( 4x3 - 7 + 2x4 + 3x5)
a) Thu gọn và sắp xếp các hạng tử của mỗi đa thức trên theo lũy thừa giảm
dần của biến.
b) Tính P(x) + Q(x), P(x) - Q(x)
Bài 5. Cho hai đa thức:
P(x) = 2x4 + 2x3 - 3x2 + x +6
Q(x) = x4 - x3 - x2 + 2x + 1
a) Tính P(x) + Q(x), P(x) - Q(x)
b) Tính và P(x) - 2Q(x).
Bài 6. Cho đa thức P(x) = 2x4 - x2 +x - 2.
Tìm các đa thức Q(x), H(x), R(x) sao cho:
a) Q(x) + P(x) = 3x4 + x3 + 2x2 + x + 1
b) P(x) - H(x) = x4 - x3 + x2 - 2
c) R(x) - P(x) = 2x3 + x2 + 1
Bài 5: Cho hai đa thức:
P(x) = 2x4 + 9x2 – 3x + 7 – x – 4x2 – 2x4
Q(x) = – 5x3 – 3x – 3 + 7x – x2 – 2
a/ Thu gọn các đa thức trên và sắp xếp các hạng tử theo lũy thừa giảm dần của biến. Tìm bậc của mỗi đa thức trên.
b/ Tính giá trị của các đa thức P(x) tại x = ; Q(x) tại x = 1.
c/ Tính Q(x) + P(x) và Q(x) – P(x)
d/ Tìm giá trị của x sao cho: Q(x) + P(x) + 5x2 – 2 = 0
giúp phần b với d
Cho hai đa thức P(x)= x4 - 5x3-1-6x2+5x-2x4
Q(x)=3x4+6x2+ 5x3+ 3- 2x4-2x
a) thu gọn và sắp xếp hai đa thức trên theo lũy thừa giảm dần của biến
b) tính : M(x)=P(x)+Q(x), và tìm nghiệm của đa thức M(x)
Bài 1:
f(x)=2x4+3x2-x+1-x2-x4-6x3
g(x)=10x2+3-x4-4x2+4x-2x2
a,Thu gọn đa thức f(x).g(x) và sắp xếp các hạng tử của mỗi đa thức lũy thừa giảm dần của biến
b,Tính f(x)+g(x)
c,Gọi h(x)=f(x)+g(x),tìm nghiệm của đa thức h(x)
Bài 2:
P(x)=x99-100x98+100x97-100x96+...+100x-1
Tính P(99)
Cho các đa thức P(x) = x – 2x2 + 3x5 + x4 + x – 1
và Q(x) = 3 – 2x – 2x2 + x4 – 3x5 – x4 + 4x2
a) Thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm của biến.
b) Tính a/ P(x) + Q(x)b/ P(x) – Q(x).
thu gọn và sắp xếp các đa thức trên theo lũy thừa giảm dần của biến P(x)=4x5-3x2+3x-2x3-4x5+x4-5x+1+4x2 Q(x)=x7-2x6+2x3-2x4-x7+x5+2x6-x+5+2x4-x5 b)tính p(x)+Q(x);P(x)-Q(x)
Cho 2 đa thức : P(x)=3x3−x2−2x4+3+2x3+x+3x4−x2−2x4+3+2x3+x+3x4 và Q(x)=−x4+x2=4x3−2+2x2−x−x3−x4+x2=4x3−2+2x2−x−x3
a) Thu gọn và sắp xếp hai đa thức P(x) và Q(x) theo lũy thừa giảm dần của biến;
b) Tính P(x) + Q(x)
c) Chứng tỏ rằng đa thức H(x)=P(x)+Q(x) không có nghiệm
Giúp mik nha
Cho hai đa thức: A(x) = 3x3 – 2x2 + x + 1 + x4 và B(x) = 2x4 – x 3 – 5 + 3x2 – 4x a/ Sắp xếp các đa thức trên theo lũy thừa giảm dần của biến. b/ Tính A(x) + B(x) và A(x) – B(x).