\(g\left(x\right)=1+x+x^2+x^3+....+x^{2020}\)
\(\Rightarrow g\left(x\right)\cdot x=x+x^2+x^3+x^4+......+x^{2021}\)
\(\Rightarrow g\left(x\right)\cdot\left(x-1\right)=x^{2021}-1\)
\(\Rightarrow g\left(x\right)=\frac{x^{2021}-1}{x-1}\)
\(\Rightarrow\hept{\begin{cases}g\left(-1\right)=\frac{\left(-1\right)^{2021}-1}{-1-1}=-1\\g\left(2\right)=\frac{2^{2021}-1}{2-1}=2^{2021}-1\end{cases}}\)