Cho đa thức f(x)=ax2+bx+c với a,b,c là các số thực. Biết rằng f(0); f(1); f(2) có giá trị nguyên
Chứng minh rằng 2a, 2b có giá trị nguyên
Cho đa thức f(x) = ax2 + bx + c với a, b, c là các hệ số nguyên sao cho abc là số nguyên tố có 3 chữ số. Chứng minh rằng : f(x) không có nghiệm hữu tỉ.
Cho đa thức F(x) = ax2 + bx . Xác định a, b để F(x) – F(x – 1) = x với mọi giá trị của x
Cho đa thức f(x)=ax2 +bx. Xác định a,b để f(x)−f(x−1)=x với mọi giá trị của x. Từ đó suy ra công thức tính tổng 1+2+...+n (với n là số nguyên dương)
1. Chứng minh đa thức f(x)=(x^2+x-1)^10+(x^2-x+1)^10-2 chia hết cho x^2-2
2. Chứng minh đa thức f(x)=x^12-x^9+x^4-x+1 không có nghiệm
3. Tìm a để đa thức f(x)=2x^2+7x+6 chia hết cho đa thức g(x)=x+a
4. Với giá trị nào của m thì đa thức f(x)=x^3+x^2-2x+1+m chia hết cho g(x)=2x+1
5. Tìm a,b,c sao cho f(x)=ax^3+b^2+c chia hết cho đa thức x+1 và f(x)=x^-1 thì dư x+5
Help me pleaseeeeeeeeeeeeeeeee
Chiều mai mình nộp rồi, bạn nào giúp được câu nào thì giúp giúp mình với, làm ơnnnnnnnn
Bài 9. Cho đa thức f(x) = 2x3 +ax2 +bx+6 với a,b là các số thực. Tìm tất cả các giá trị của a,b sao cho f(1)=2 và f(−1)=12.
tìm các số thực a,b sao cho đa thức f(x)=4x^4-11x^3-2ax^2+5bx-6 chia hết cho đa thức x^2-2x-3
Với giá trị nào của a, b thì đa thức f(x) chia hết cho đa thức g(x)
a) f(x) = x³ + ax² – 4. g(x) = x² + 4x + 4
b) f(x) = x⁴ + ax³ + bx – 1. g(x) = x² – 1
c) f(x) = 2x³ – 3ax² + 2x +b g(x) = (x – 1)(x + 2)
1. Cho đa thức f(x)ϵZ[x]f(x)ϵZ[x]
f(x)=ax4+bx3+cx2+dx+ef(x)=ax4+bx3+cx2+dx+e với a, b, c, d, e là các số lẻ.
Cm đa thức không có nghiệm hữu tỉ
2. Cho P(x) có bậc 3; P(x)ϵZ[x]P(x)ϵZ[x] và P(x) chia hết cho 7 với mọi x ϵZϵZ
CmR các hệ số của P(x) chia hết cho 7.
3. Cho đa thức P(x) bậc 4 có hệ số cao nhất là 1 thỏa mãn P(1)=10; P(2)=20; P(3)=30.
Tính P(12)+P(−8)10P(12)+P(−8)10
4. Tìm đa thức P(x) dạng x5+x4−9x3+ax2+bx+cx5+x4−9x3+ax2+bx+c biết P(x) chia hết cho (x-2)(x+2)(x+3)
5. Tìm đa thức bậc 3 có hệ số cao nhất là 1 sao cho P(1)=1; P(2)=2; P(3)=3
6. Cho đa thức P(x) có bậc 6 có P(x)=P(-1); P(2)=P(-2); P(3)=P(-3). CmR: P(x)=P(-x) với mọi x
7. Cho đa thức P(x)=−x5+x2+1P(x)=−x5+x2+1 có 5 nghiệm. Đặt Q(x)=x2−2.Q(x)=x2−2.
Tính A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5)A=Q(x1).Q(x2).Q(x3).Q(x4).Q(x5) (x1,x2,x3,x4,x5x1,x2,x3,x4,x5 là các nghiệm của P(x))