Cho đa thức f(x) thỏa mãn: f(x)+x.f(-x)=X+1 với mọi x. Tính f(x)
Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
Cho đa thức f(x) thỏa mãn điều kiện: x.f(x + 1) = (x + 2).f(x). Chứng minh rằng đa thức f(x) có ít nhất hai nghiệm.
cho đa thức f(x) thỏa mãn f(x)+x.f(-x)=x+1 với mọi giá trị của x.tính f(1)
Cho đa thức f(x) thỏa mãn f(x)+x.f(-x)=x+2015 với mọi giá trị của x . tính f(-1)
Cho đa thức f(x) thỏa mãn f(x) + x.f(-x)=x+2015 với mọi giá trị của x. Tính f(-1)
cho đa thức f(x) thỏa mãn f(x)+x.f(-x)=x+1
Vx tính f(1)
cho đa thức f(x) thỏa mãn: x.f(x+1)=(x+2).f(x)
CMR: đa thức f(x) có ít nhất 2 nghiệm phân biệt
cho đa thức p(x) thỏa mãn f(x)+x.f(-x)= x + 1 với mọi x thuộc R. Hãy tìm f(1)