cho đa thức f(x)= x2+bx+c (b và c là các số nguyên)
chưng minh tồn tại số nguyên k để f(k)=f(2007).f(2008)
1)cho f(x)=ax^3+bx^2+cx+d trong đó a,b,c,d thuộc Z và thỏa mãn b=3a+c.Chứng minh rằng f(1).f(-2) là bình phương của một số nguyên.
2)cho đa thức f(x)=ax^2+bx+c với a,b,c là hằng số.Hãy xác định a,b,c biết f(1)=4,f(-1)=8 và a-c=4
3)cho f(x)=ax^3+4x(x^2-1)+8;g(x)=x^3-4x(bx-1)+c-3.Xác định a,b,c để f(x)=g(x).
4)cho f(x)=cx^2+bx+a và g(x)=ax^2+bx+c.
cmr nếu Xo là nghiệm của f(x) thì 1/Xo là nghiệm của g(x)
5)cho đa thức f(x) thỏa mãn xf(x+2)=(x^2-9)f(x).cmr đa thức f(x) có ít nhất 3 nghiệm
6)tính f(2) biết f(x)+(x+1)f(-x)=x+2
cho đa thức f(x)= x2+bx+c (b và c là các số nguyên)
chưng minh tồn tại số nguyên k để f(k)=f(2007).f(2008)
bạn nào làm đc chứng tỏ giỏi hơn mình
còn ko thì thôi
cho đa thức f(x)=\(ax^3+bx^2+cx+d\) với các hệ số a , b , c , d là các số nguyên
Chứng minh rằng không thể đồng thời tồn tại f(7)=53 và f(3)=35
cho f(x)=ax^2+bx+c. chứng minh rằng không có các số nguyên a, b, c nào làm cho f(x)=1 khi x=2008 và f(x)=2 khi x=2010
Cho đa thức: f(x)=ax^2+bx+c. C/m không tồn tại a,b,c thuộc Z sao cho f(x)=1 khi x=1998 và f(x)=2 khi x=2000
Cho f(x) = ax2 + bx + c ( a,b,c là các hệ số nguyên) chứng minh không có số nguyên a,b,c nào làm cho f(x) = 1 khi x= 2008 và f(x)=2 khi x=2010
Gíup nhé !! tks!
Cho đa thức f(x)=ax2+bx+c ( a;b;c là số thực ). Biết f(0), f(1), f(2) có giá trị nguyên. CMR:
a. 2a và 2b có giá trị nguyên
b. f(3), f(4), f(5) cũng có giá trị nguyên.
Cho đa thức F(x) = ax^3+2bx^2+3cx+4d
với các hệ số a,b,c là các số nguyên. chứng minh rằng ko thể đồng thời tồn tại f(7)= 73 và f(3)=58