Cho đa thức \(f\left(x\right)=ax^3+bx^2+cx+d\) . Biết \(f\left(x\right)=0\) với mọi giá trị của \(x\). Chứng minh \(a=b=c=d=0\)
Giúp e với ạ :<
Cho đa thức \(f\left(x\right)=ax^2+bx+c\) Biết f(0),f(1),f(2) đều là các số nguyên. Chứng minh f(x) luôn nhận giá trị nguyên với mọi \(x\in Z\)
1. Xác định các đa thức sau:
a) Nhị thức bậc nhất f(x) = ax + b với a≠0, biết f(-1) = 1 và f(1) = -1
b) Tam thức bậc hai \(g\left(x\right)=ax^2+bx+c\) với a≠0, biết g(-2) = 9, g(-1) = 2, g(1)=6
2.a) Đa thức f(x) = ax + b (a≠0). Biết f(0) = 0. Chứng minh f(x) = -f(-x) với mọi x
b) Đa thức f(x) = ax2 + bx + c (a≠0). Biết f(1) = f(-1). Chứng minh f(x) = f(-x) với mọi x.
3. Tìm tổng các hệ số của đa thức sau khi phá ngoặc và sắp xếp, biết:
a) Đa thức \(f\left(x\right)=\left(2x^3-3x^2+2x+1\right)^{10}\)
b) Đa thức \(g\left(x\right)=\left(3x^2-11x+9\right)^{2011}.\left(5x^4+4x^3+3x^2-12x-1\right)^{2012}\)
Cho đa thức \(f\left(x\right)=a.x^2+b.x+c\). Trong đó a, b, c là các hệ số nguyên. Biết rằng \(f\left(x\right)\)chia hết cho 3 với mọi \(x\in Z\). Chứng minh rằng a,b,c chia hết cho 3
Cho đa thức \(f\left(x\right)=ax^2+bx+c\) , với a, b, c là các số thực. Biết rằng f(0), f(1), f(2) có giá trị nguyên. Chứng minh rằng tổng f(3)+f(4)+f(5) cũng có giá trị nguyên
bài 1
a) cho B = \(\frac{1}{2}+\frac{3}{2^2}+\frac{7}{2^3}+...+\frac{2^{100}-1}{2^{100}}\). Chứng minh B >99
b)chứng minh \(\left(n+1\right)\left(n+2\right)\left(n+3\right)...\left(2n\right)⋮2^n\)với n nguyên dương
c) cho đa thức f(x) = ax^3 + bx^3 + cx + d . với f(0) và f(1) là các số lẻ. CMR f(x) không có nghiệm là số nguyên.
Cho đa thức \(f\left(x\right)=x^3+ax^2+bx+2020\) với a,b thuộc Z. Biết rằng f(x) có 1 nghiệm là số nguyên lớn hơn 100 và nhỏ hơn 200. Tìm nghiệm nguyên đó.
Bài 1: Tính giá trị biểu thức M = 21x2y + 4xy2 với x, y thỏa mãn: \(\left(x-2\right)^4+\left(2y-1\right)^{2014}\le0\)
Bài 2: Cho \(f\left(x\right)=ax^3+bx^2+cx+d\) trong đó \(a,b,c,d\in Z\) và thỏa mãn b = 3a + c. Chứng minh rằng \(f\left(1\right).f\left(-2\right)\) là bình phương của một số nguyên.
Chứng minh rằng nếu đa thức\(f\left(x\right)=ax^2+bx+c\)chia hết cho 3 với mọi x thì các hệ số a, b, c đều chia hết cho 3