Ta có \(A\left(\frac{1}{2}\right)=\frac{1}{2}+\left(\frac{1}{2}\right)^2+\left(\frac{1}{2}\right)^3+...+\left(\frac{1}{2}\right)^{100}=\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\)
=> \(2.A\left(\frac{1}{2}\right)=1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\)
=> \(2A\left(\frac{1}{2}\right)-A\left(\frac{1}{2}\right)=\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{99}}\right)-\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{100}}\right)\)
=> \(A\left(\frac{1}{2}\right)=1-\frac{1}{2^{100}}\)