\(x=0\Rightarrow A\left(0\right)=0\Rightarrow0\text{ là một nghiệm của PT}\)
\(x=4\Rightarrow A\left(2\right)=0\Rightarrow2\text{ là một nghiệm của PT}\)
\(\text{Vậy: }A\left(x\right)\text{ có thể viết dưới dạng }A\left(x\right)=x\left(x-2\right).Q\left(x\right)\)
\(\Rightarrow x.\left(x-2\right)\left(x-4\right).Q\left(x-2\right)=\left(x-4\right).x.\left(x-2\right).Q\left(x\right)\)
\(\Rightarrow x\left(x-2\right)\left(x-4\right).\left[Q\left(x\right)-Q\left(x-2\right)\right]=0\)
\(\text{Có thể thấy: }Q\left(x\right)=Q\left(x-2\right)=m\Rightarrow x=0,2,4\text{ thế vào PT, ta có: }x=4\text{ đã cho không nghiệm}\)