Cho đa giác đều A1A2…A2n nội tiếp trong đường tròn tâm O. Biết rằng số tam giác có đỉnh là 3 trong 2n điểm A1;A2;…;A2n gấp 20 lần so với số hình chữ nhật có đỉnh là 4 trong 2n điểm A1;A2;…;A2n . Tìm n?
A. 3
B. 6
C.8
D.12
Cho một đa giác đều có 18 đỉnh nội tiếp đường tròn tâm O. Gọi X là tập hợp tất cả các tam giác có đỉnh trùng với 3 trong số 18 đỉnh của đa giác đã cho. Chọn tam giác trong tập hợp X. Xác suất để tam giác được chọn là tam giác cân bằng
A . 23 136
B . 144 136
C . 3 17
D . 11 68
Cho đa giác đều 12 đỉnh nội tiếp đường tròn tâm O. Chọn ngẫu nhiên 3 đỉnh của đa giác đó. Tính xác xuất để 3 đỉnh được chọn tạo thành một tam giác không có cạnh nào là cạnh của đa giác đã cho.
A. 12 . 8 C 12 2
B. C 12 8 - 12 . 8 C 12 3
C. C 12 3 - 12 - 12 . 8 C 12 3
D. 12 + 12 . 8 C 12 3
Cho 6 điểm A, B, C, D, E, F cùng thuộc một đường tròn. Hỏi có thể tạo ra được bao nhiêu tam giác có ba đỉnh là 3 trong 6 điểm trên?
A. 20
B. 120
C. 18
D. 9
Trong mặt phẳng, cho hai tia Ox và Oy vuông góc với nhau tại gốc O. Trên tia Ox lấy 10 điểm A 1 , A 2 , . . . , A 10 và trên tia Oy lấy 10 điểm B 1 , B 2 , . . . . , B 10 thỏa mãn O A 1 = A 1 A 2 = . . . = A 9 A 10 = O B 1 = B 1 B 2 = . . . . = B 9 B 10 = 1 (đvd). Chọn ra ngẫu nhiên một tam giác có đỉnh nằm trong 20 điểm A 1 , A 2 , . . . . , A 10 , B 1 , B 2 , . . . , B 10 . Xác suất để tam giác chọn được có đường tròn ngoại tiếp tiếp xúc với một trong hai trục Ox hoặc Oy là
A . 1 228
B . 2 225
C . 1 225
D . 1 114
Trong không gian với hệ tọa độ Oxyz cho hình lăng trụ tam giác đều ABC. A 1 B 1 C 1 có A 1 ( 3 ; - 1 ; 1 ) hai đỉnh B, C thuộc trục Oz và AA'=1 ( C không trùng O). Biết u → = ( a ; b ; 2 ) là một véc tơ chỉ phương của đường thẳng A 1 C .Tính T = a 2 + b 2
A. 4
B. 5
C. 9
D. 16
Cho 10 điểm phân biệt A1, A2, …, A10 trong đó có 4 điểm A1, A2, A3, A4 thẳng hàng, ngoài ra không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác có 3 đỉnh được lấy trong 10 điểm trên ?
A. 96 tam giác
B. 60 tam giác
C. 116 tam giác
D. 80 tam giác
Cho 10 điểm phân biệt A 1 , A 2 , . . . . . A 10 trong đó có 4 điểm A 1 , A 2 , A 3 , A 4 thẳng hàng, ngoài ra không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu tam giác có 3 đỉnh được lấy trong 10 điểm trên?
A. 96 tam giác.
B. 60 tam giác.
C. 116 tam giác.
D. 80 tam giác.
Gọi là đa giác đều 4n đỉnh nội tiếp trong đường tròn tâm O n ∈ ℕ * và X là tập hợp các tam giác có ba đỉnh là các đỉnh của đa giác. Chọn ngẫu nhiên một tam giác thuộc tập X. Biết rằng xác suất chọn được một tam giác vuông thuộc tập X là 1 13 . Giá trị của n là
A. 9.
B. 14.
C. 10.
D. 12.