Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Quang Thiên

Cho cos \(\alpha\)=\(-\frac{4}{5}\) và \(-\pi< \alpha< \frac{-3}{2}\pi\). Tính \(\sin2\alpha;\)\(\cos2a;\sin\left(\frac{5\pi}{2}-\alpha\right);\tan\left(\alpha+\frac{\pi}{4}\right);\cos\frac{\alpha}{2}\)

 

Le Hong Phuc
16 tháng 5 2020 lúc 9:47

--.--  \(-\pi>-\frac{3}{2}\pi\) mà
Chắc nhầm đề rồi, phải là \(-\pi>a>-\frac{3}{2}\pi\)mới đúng chứ

Khách vãng lai đã xóa
Le Hong Phuc
16 tháng 5 2020 lúc 9:58

\(-\pi>a>-\frac{3}{2}\pi\Leftrightarrow\pi>a>\frac{1}{2}\pi\)

\(\cos a=-\frac{4}{5}\Rightarrow\sin a=\frac{3}{5}\)

\(\sin2a=2\sin a.\cos a=2.\frac{3}{5}.\frac{-4}{5}=-\frac{24}{25}\)

\(\cos2a=2\cos^2a-1=\frac{7}{25}\)

\(\sin\left(\frac{5\pi}{2}-a\right)=\sin\left(\frac{\pi}{2}-a\right)=\cos a=-\frac{4}{5}\)

\(\sin\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{3}{5}-\frac{4}{5}.\frac{\sqrt{2}}{2}=-\frac{\sqrt{2}}{10}\)

\(\cos\left(a+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}.\frac{-4}{5}-\frac{\sqrt{2}}{2}.\frac{3}{5}=-\frac{7\sqrt{2}}{10}\)

\(\Rightarrow\tan\left(a+\frac{\pi}{4}\right)=\frac{1}{7}\)

\(\cos^2\left(\frac{a}{2}\right)=\frac{1+\cos a}{2}=\frac{1}{10}\Leftrightarrow\left|\cos\frac{a}{2}\right|=\frac{\sqrt{10}}{10}\)

Mà \(\frac{\pi}{2}>\frac{a}{2}>\frac{\pi}{4}\)

\(\Rightarrow\cos\frac{a}{2}=\frac{\sqrt{10}}{10}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Khánh Ly
Xem chi tiết
Dat Huynh
Xem chi tiết
tran gia vien
Xem chi tiết
Thái Hưng Mai Thanh
Xem chi tiết
Lê Quang Thiên
Xem chi tiết
Nguyễn Hàn Nhi
Xem chi tiết
Trần Thái Quang
Xem chi tiết
Nguyễn Khánh Ly
Xem chi tiết
HUỲNH NGỌC BẢO ÂN
Xem chi tiết