a: Xét ΔADB và ΔAEC có
AD=AE
\(\widehat{A}\) chung
AB=AC
Do đó: ΔADB=ΔAEC
a: Xét ΔADB và ΔAEC có
AD=AE
\(\widehat{A}\) chung
AB=AC
Do đó: ΔADB=ΔAEC
Bài 1: Cho tam giác ABC (AB<AC). Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho BD = CE. Đường trung trực của đoạn thẳng BC và DE cắt nhau tại O.
CMR: Tam giác BDO = Tam giác CEO
Bài 2: Cho tam giác ABC có AB = AC, điểm E trên đoạn AB, điểm F trên đoạn AC sao cho AE = AF
a) Chứng minh tam giác AEC = tam giác AFB từ đó suy ra BF = CE
b) Chứng minh tam giác BEC = tam giác CFV
c) Gọi I là giao điểm của CE và BF. CMR tam giác BIE = tam giác CIF
Cho tam giác ABC có AB = AC, M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy E sao cho: AD = AE.
a) Chứng minh rằng: . Suy ra AM là phân giác của góc A
b) Gọi K là giao điểm của AM và DE. Chứng minh rằng:
c) Trên tia đối của tia ED lấy điểm F sao cho FE = MC, gọi H là trung điểm của EC. Chứng minh rằng: ba điểm M, H, F thẳng hàng.
Cho tam giác ABC (AB<AC), vẽ tia phân giác AD của tam giác ABC. Trên cạnh AC lấy điểm E sao cho AE=AB.
a) Chứng minh tam giác ADB = tam giác ADE
b) Chứng minh AD là đường trung trực của BE
c) Gọi F là giao điểm của AB và DE. Chứng minh tam giác BFD=tam giác ECD
d) So sánh DB và DC
Cho tam giác ABC ( AB<AC). Vẽ phân giác AD của tam giác ABC. Trên cạnh AC lấy điểm E sao cho AE=AB
a) Chứng minh tam giác ADB= tam giác ADE
b) Chứng minh AD là đường trung trực của BE
c) Gọi F là giao điểm của AB và DE. Chứng minh tam giác BFD= tam giác ECD
d) So sánh DB và DC
Cho tam giác ABC (AB<AC), vẽ tia phân giác AD của tam giác ABC. Trên cạnh AC lấy điểm E sao cho AE=AB.
a) Chứng minh tam giác ADB=tam giác ADE
b) Chứng minh AD là đường trung trực của BE
c) Gọi F là giao điểm của AB và DE. Chứng minh tam giác BFD=tam giác ECD
d) So sánh DB và DC
Bài 6 (3 điểm): ): Cho tam giác ABC có AB = AC, M là trung điểm của BC. Trên cạnh AB lấy điểm D, trên cạnh AC lấy E sao cho: AD = AE.
a) Chứng minh rằng: . Suy ra AM là phân giác của góc A
b) Gọi K là giao điểm của AM và DE. Chứng minh rằng:
c) Trên tia đối của tia ED lấy điểm F sao cho FE = MC, gọi H là trung điểm của EC. Chứng minh rằng: ba điểm M, H, F thẳng hàng.
Cho tam giác ABC có AC > AB .trên cạnh CA lấy điểm E sao cho CE= AB.các đườg trung trực của cạnh BE và AC cắt nhau ở O. Chứng Minh Rằng AO là Phân giác của góc A
Cho tam giác ABC có AB < AC. AD là tia phân giác của góc ABC (D thuộc BC). Trên cạnh AC lấy điểm E sao cho AE = AB.
a, Chứng minh tam giác ADB = tam giác ADE
b, Chứng minh AD là trung trực của BE
c, Gọi F là giao điểm của AB và DE. Chứng minh tam giác BFD = tam giác ECD
Cho tam giác ABC có AB=AC.TRên cạnh AB lấy điểm E,trên cạnh AC lấy điểm D sao cho AE=AD. Gọi F là giao điểm của BD và CE, H là trung điểm của BC. Chứng minh rằng :
a)tam giác ADB = Tam giác AEC
b)BF=CF
c)Ba điểm A,F,H thẳng hàng