Cho cấp số nhân u n với u 1 = 1 , công bội q = 2 và cấp số cộng v n có v 1 = 2 công sai d = 2. Hỏi có tất cả bao nhiêu số có mặt đồng thời trong 1000 số hạng đầu tiên của cả hai cấp số cộng nói trên?
A. 9
B. 10
C. 11
D. 12
Cho cấp số cộng ( u n ) có u 2013 + u 6 = 1000 . Tổng 2018 số hạng đầu tiên của cấp số cộng đó là:
A. 1009000
B. 100800
C. 1008000
D. 100900
Cho cấp số cộng u n có u 2013 + u 6 = 1000 . Tổng 2018 số hạng đầu tiên của cấp số cộng đó là:
A. 1009000
B. 100900
C. 100800
D. 1008000
Cho một cấp số nhân có n số hạng. Số hạng đầu tiên là 1, công bội là q và tổng là S. Trong đó q và S đều khác 0. Tổng các số hạng của cấp số nhân mới được thành bằng cách thay đổi mỗi số hạng của cấp số nhân ban đầu bằng nghịch đảo của nó là:
A. 1 S .
B. 1 q n . S .
C. S q n − 1 .
D. q n S .
Cho cấp số nhân u n có tổng n số hạng đầu tiên là S n = 5 n − 1 , n = 1 , 2 , 3 ... Tìm số hạng đầu u 1 và công bội q của cấp số nhân đó.
A. u 1 = 5 , q = 6
B. u 1 = 4 , q = 5
C. u 1 = 5 , q = 4
D. u 1 = 6 , q = 5
Ba số phân biệt có tổng 217, là các số hạng liên tiếp của một cấp số nhân, theo thứ tự đó chúng lần lượt là số hạng thứ 2, thứ 9 và thứ 44 của một cấp số cộng. Biết tổng của n số hạng đầu tiên của cấp số cộng là 820, khi đó n bằng
A. 21
B. 42
C. 20
D. 17
Cho cấp số nhân u n có số hạng đầu u 1 = 6 và công bội q = 2 . Số hạng thứ tư của cấp số nhân đó bằng
A. 24
B. 96
C. 12
D. 48
Cho một cấp số nhân có các số hạng đều không âm thỏa mãn u 2 = 6 , u 4 = 24. Tính tổng của 12 số hạng đầu tiên của cấp số nhân đó.
A. 3.2 12 − 3.
B. 2 12 − 1.
C. 3.2 12 − 1.
D. 3.2 12 .
Cho một cấp số nhân có các số hạng đều không âm thỏa mãn u 2 = 6 , u 4 = 24 . Tính tổng của 12 số hạng đầu tiên của cấp số nhân đó
A. 3 . 2 12 - 3
B. 2 12 - 1
C. 3 . 2 12 - 1
D. 3 . 2 12