Đáp án B
Hướng dẫn giải.
Ta có u n = u 1 . q n - 1
⇒ u 5 = - 3 . 2 3 4 = - 16 27
Đáp án B
Hướng dẫn giải.
Ta có u n = u 1 . q n - 1
⇒ u 5 = - 3 . 2 3 4 = - 16 27
Tìm các số hạng của cấp số nhân u n có năm số hạng, biết: u 3 = 3 và u 5 = 27
Cho cấp số nhân ( u n ) có số hạng đầu u 1 = 2 và công bội q = 3 . Số hạng thứ 5 bằng
A. 96
B. 48
C. 486
D. 162
Cấp số cộng gồm tám số hạng -1, 3, 7, 11, 15, 19, 23, 27 được viết vào bảng sau:
-1 | 3 | 7 | 11 | 15 | 19 | 23 | 27 |
a) Hãy chép lại bảng trên và viết các số hàn của cấp số đó vào dòng thứ hai theo thứ tự ngược lại. Nêu nhận xét về tổng của các số hạng ở mỗi cột.
b) Tính tổng các số hạng của cấp số cộng.
Một cấp số nhân có bảy số hạng với số hạng đầu và công bội là các số âm. Biết tích của số hạng thứ ba và số hạng thứ năm bằng 5184; tích của số hạng thứ năm và số hạng cuối bằng 746496. Khi đó số hạng thứ năm là:
A. -144
B. 144
C. 144 3
D. - 144 3
Cho cấp số nhân ( u n ) có số hạng đầu u 1 = 6 và công bội q = 2. Số hạng thứ tư của cấp số nhân đó bằng
A. 24
B. 96
C. 12
D. 48
Cho cấp số nhân có số hạng đầu là u 1 = - 2 và số hạng thứ ba là u 4 = - 54 . Khi đó, công bội q bằng
A. 9 3
B. -3
C. 3
D. - 9 3
1) cho cấp số nhân \(\left(u_n\right)\) có \(u_2=2\), \(u_6=32\) công bội của cấp số nhân đó là
2) cho cấp số nhân \(\left(u_n\right)\) có số hạng đầu \(u_1=2\) và công bội q = 3. Gía trị \(u_{2019}\) bằng
Cấp số nhân ( u n ) có u 1 + u 5 = 51 u 2 + u 6 = 102
a) Tìm số hạng đầu và công bội của cấp số nhân:
b) Hỏi tổng của bao nhiêu số hạngđầu tiên sẽ bằng 3096?
c) Số 12288 là số hạng thứ mấy?