Chọn đáp án A
Phương pháp
Sử dụng công thức SHTQ của cấp số cộng
u n = u 1 + ( n - 1 ) d
Cách giải
Ta có: u 7 = u 1 + 6 d = 15
Chọn đáp án A
Phương pháp
Sử dụng công thức SHTQ của cấp số cộng
u n = u 1 + ( n - 1 ) d
Cách giải
Ta có: u 7 = u 1 + 6 d = 15
Cho cấp số cộng (un) có số hạng đầu u1 = 2 và công sai d = 5. Giá trị của u4 bằng
A. 22
B. 17
C. 12
D. 250
Cho cấp số cộng ( u n ) có số hạng đầu u 1 = 2 và công sai d = 5. Giá trị của u 4 bằng
A. 22
B. 17
C. 12
D. 250
Cho cấp số cộng (un) có số hạng đầu là u1 = 1 và công sai d = 1. Tìm n sao cho tổng của n số hạng đầu tiên của cấp số cộng đó bằng 3003.
A. n = 79
B. n = 78
C. n = 77
D. n = 80
Cho cấp số cộng (un) có công sai d = -3 và u22 + u32 + u42 đạt giá trị nhỏ nhất. Tính tổng S100 của số hạng đầu tiên của cấp số cộng đó.
A. S100 = -14650.
B. S100 = -14400.
C. S100 = -14250.
D. S100 = -15450.
Cho cấp số cộng có công sai d = 1 và u22 – 2u32 – u42 đạt giá trị lớn nhất. Tính tổng S20 của 20 số hạng đầu tiên của cấp số cộng đó.
A.120
B. 125
C.130
D.135
Cho cấp số cộng ( u n ) có công sai d = - 3 và u 2 2 + u 3 2 + u 4 2 đạt giá trị nhỏ nhất. Tính tổng S 100 của 100 số hạng đầu tiên của cấp số cộng đó
A. S 100 = - 14650
B. S 100 = - 14400
C. S 100 = - 14250
D. S 100 = - 15450
Cho cấp số cộng (un)thoả u2=3 và u10=-15 Tính số hạng đầu u1, công sai d và tổng 20 số hạng đầu tiên của cấp số cộng (un)
Cho cấp số cộng có công sai d=-3 và u22 + u32+ u42 đạt giá trị nhỏ nhất. Tính tổng S100 của 100 số hạng đầu tiên của CSC đó.