Chọn A
Ta có:
u 4 = u 1 + 3 d u 14 = u 1 + 13 d
Suy ra chọn đáp án A.
Chọn A
Ta có:
u 4 = u 1 + 3 d u 14 = u 1 + 13 d
Suy ra chọn đáp án A.
Cho cấp số cộng có u 4 = - 12 ; u 14 = 18 . Tìm u1, d của cấp số cộng?
A. u 1 = 20 ; d = - 3
B. u 1 = 22 ; d = 3
C. u 1 = - 21 ; d = - 3
D. u 1 = - 20 ; d = - 3
Bài 1: Cho cấp số nhân có: u3 = 18 và u6 = -486.
Tìm số hạng đầu tiên và công bội q của cấp số nhân đó
Bài 2: Tìm u và q của cấp số nhân (un) biết:
Bài 3: Tìm cấp số nhân (un) biết cấp số đó có 4 số hạng có tổng bằng 360 và số hạng cuối gấp 9 lần số hạng thứ hai.
Cấp số cộng (un) có u1 = -1, u10 = 21. Tổng 10 số hạng đầu của cấp số cộng đó bằng
A. 200
B. 110
C. 220
D. 100
Cho cấp số cộng (un) có số hạng đầu là u1 = 1 và công sai d = 1. Tìm n sao cho tổng của n số hạng đầu tiên của cấp số cộng đó bằng 3003.
A. n = 79
B. n = 78
C. n = 77
D. n = 80
Cho cấp số cộng u n biết u 5 = 18 v à 4 S n = S 2 n . Tìm số hạng đầu tiên u 1 và công sai d của cấp số cộng
A. u 1 = 2 ; d = 4
B. u 1 = 2 ; d = 3
C. u 1 = 2 ; d = 2
D. u 1 = 3 ; d = 2
Cho cấp số cộng ( u n ) biết u 5 = 18 và 4 S n = S 2 n . Tìm số hạng đầu tiên u 1 và công sai d của cấp số cộng
A. u 1 = 3 ; d = 2
B. u 1 = 2 ; d = 3
C. u 1 = 2 ; d = 2
D. u 1 = 2 ; d = 4
1) tìm số hạng đầu và công sai của một cấp số cộng biết \(\left\{{}\begin{matrix}u_3=-3\\u_9=29\end{matrix}\right.\)
2) cho cấp số cộng \(\left(u_n\right)\) có \(u_1=-5\) và d = 3. Tính \(S_{20}\)
1) cho cấp số cộng \(\left(u_n\right)\) với \(u_1=2\) và \(u_7=-10\) công sai của cấp số cộng là
2) cho cấp số cộng \(\left(u_n\right)\) với \(u_1=1\) và d = 2 tổng \(S_{10}=u_1+u_2+u_3...+u_{10}\) bằng
3) cho cấp số cộng \(\left(u_n\right)\) có số hạng đầu \(u_1=3\) và d = 2. Tổng của 2019 số hạng đầu bằng
4) cho cấp số cộng 2;5;8;11;14... công sai của cấp số cộng đã cho bằng
5) cho cấp số cộng \(\left(u_n\right)\) với \(u_1=2\) và d = 9 khi đó số 2018 là số hạng thứ mấy trong dãy
6) cho cấp số cộng \(\left(u_n\right)\) có số hạng đầu \(u_1=3\) và d = 2