Đáp án D
Ta có: u 14 = u 4 + 10 d ⇒ d = u 14 - u 4 10 = 3
Tổng 16 số hạng đầu tiên của cấp số cộng này là: S = u 1 + u 16 2 . 16 = u 4 - 3 d + u 14 + 2 d 2 . 16
= 6 - 3 2 . 16 = 24 .
Đáp án D
Ta có: u 14 = u 4 + 10 d ⇒ d = u 14 - u 4 10 = 3
Tổng 16 số hạng đầu tiên của cấp số cộng này là: S = u 1 + u 16 2 . 16 = u 4 - 3 d + u 14 + 2 d 2 . 16
= 6 - 3 2 . 16 = 24 .
Cho cấp số cộng u n có u 4 = − 12 , u 14 = 18 . Tính tổng 16 số hạng đầu tiên của cấp số cộng này.
A. S 16 = − 24
B. S 16 = 26
C. S 16 = − 25
D. S 16 = 24
Cho cấp số cộng u n có u 4 = - 12 ; u 14 = 18 . Tổng của 16 số hạng đầu tiên của cấp số cộng là:
A. S = 24
B. S = -25
C. S = -24
D. S = 26
Cho cấp số cộng có u 4 = - 12 , d = 3 Khi đó tổng của 16 số hạng đầu tiên của cấp số cộng là
A. -24
B. 24
C. -26
D. 26
Cho cấp số cộng u n với số hạng đầu u 1 = 6 và công sai d = 4. Tính tổng S của 14 số hạng đầu tiên của cấp số cộng đó.
A.S = 46
B. S = 308
C. S = 644
D. S = 280
Cho bốn số hạng liên tiếp của một cấp số cộng, có tổng của chúng bằng 16 và tổng bình phương của chúng bằng 84. Tính tổng hai bình phương số hạng đầu và số hạng cuối của bốn số hạng đó.
A. 34
B. 64
C. 50
D. 49
Cho bốn số hạng liên tiếp của một cấp số cộng, có tổng của chúng bằng 16 và tổng bình phương của chúng bằng 84. Tính tổng hai bình phương số hạng đầu và số hạng cuối của bốn số hạng đó.
A. 49
B. 64
C. 50
D. 34
Cho một cấp số cộng ( u n ) , u 1 = 1 và tổng 100 số hạng đầu tiên là 24850. Tính S = 1 u 1 u 2 + 1 u 2 u 3 + . . . + 1 u 49 u 50
A. S = 9 242
B. S = 4 23
C. S = 33 125
D. S = 49 246
Cho cấp số cộng có tổng của n số hạng đầu tiên được tính bởi công thức S n = 4 n − n 2 . Gọi M là tổng của số hạng đầu tiên và công sai của cấp số cộng đó. Khi đó :
A. M=7
B. M=4
C. M= -1
D. M=1
Cho cấp số cộng có tổng của n số hạng đầu tiên được tính bởi công thức S n = 4 n − n 2 . Gọi M là tổng của số hạng đầu tiên và công sai của cấp số cộng đó. Khi đó :
A. M = 7
B. M = 4
C. M = -1
D. M = 1