Cho ba số 2017 + log 2 a , 2018 + log 3 a và 2019 + l o g 4 a theo thứ tự lập thành một cấp số cộng. Công sai của cấp số cộng này bằng
A. 1.
B. 12.
C. 9.
D. 20.
Cho ba số 2017 + log 2 a , 2018 + log 3 a và 2019 + log 4 a theo thứ tự lập thành một cấp số cộng. Công sai của cấp số cộng này bằng
A. 1.
B. 12.
C. 9.
D. 20.
Cho cấp số nhân u n với u 1 = 1 , công bội q = 2 và cấp số cộng v n có v 1 = 2 công sai d = 2. Hỏi có tất cả bao nhiêu số có mặt đồng thời trong 1000 số hạng đầu tiên của cả hai cấp số cộng nói trên?
A. 9
B. 10
C. 11
D. 12
Cho cấp số cộng có tổng của n số hạng đầu tiên được tính bởi công thức S n = 4 n − n 2 . Gọi M là tổng của số hạng đầu tiên và công sai của cấp số cộng đó. Khi đó :
A. M=7
B. M=4
C. M= -1
D. M=1
Cho cấp số cộng có tổng của n số hạng đầu tiên được tính bởi công thức S n = 4 n − n 2 . Gọi M là tổng của số hạng đầu tiên và công sai của cấp số cộng đó. Khi đó :
A. M = 7
B. M = 4
C. M = -1
D. M = 1
Cho một cấp số nhân có n số hạng. Số hạng đầu tiên là 1, công bội là q và tổng là S. Trong đó q và S đều khác 0. Tổng các số hạng của cấp số nhân mới được thành bằng cách thay đổi mỗi số hạng của cấp số nhân ban đầu bằng nghịch đảo của nó là:
A. 1 S .
B. 1 q n . S .
C. S q n − 1 .
D. q n S .
Cho cấp số cộng u n với số hạng đầu u 1 = 6 và công sai d = 4. Tính tổng S của 14 số hạng đầu tiên của cấp số cộng đó.
A.S = 46
B. S = 308
C. S = 644
D. S = 280
Cho cấp số nhân ( u n ) có tổng n số hạng đầu tiên là S n = 6 n - 1 . Tìm số hạng thứ năm của cấp số cộng đã cho
A. 6480
B. 6840
C. 7775
D. 12005
Cho cấp số cộng ( u n ) có u 2013 + u 6 = 1000 . Tổng 2018 số hạng đầu tiên của cấp số cộng đó là:
A. 1009000
B. 100800
C. 1008000
D. 100900