Cho các số thực dương x,y,z tm: x+y+z=3
CMR \(\frac{2x^2+y^2+z^2}{4-yz}+\frac{2y^2+z^2+x^2}{4-zx}+\frac{2z^2+x^2+y^2}{4-xy}\ge 4xyz\)
@Lightning Farron giúp em với
Áp dụng BĐT AM-GM ta có:
\(VT=\dfrac{2x^2+y^2+z^2}{4-yz}+\dfrac{2y^2+z^2+x^2}{4-xz}+\dfrac{2z^2+x^2+y^2}{4-xy}\)
\(\ge\dfrac{4x\sqrt{yz}}{4-yz}+\dfrac{4y\sqrt{xz}}{4-xz}+\dfrac{4z\sqrt{xy}}{4-xy}\)
Cần chứng minh: \(\dfrac{4x\sqrt{yz}}{4-yz}+\dfrac{4y\sqrt{xz}}{4-xz}+\dfrac{4z\sqrt{xy}}{4-xy}\ge4xyz\)
\(\Leftrightarrow\dfrac{\sqrt{yz}}{yz\left(4-yz\right)}+\dfrac{\sqrt{xz}}{xz\left(4-xz\right)}+\dfrac{\sqrt{xy}}{xy\left(4-xy\right)}\ge1\)
Mà theo BĐT Cauchy-SChwarz ta có:
\(\left(x+y+z\right)^2\ge\left(1+1+1\right)\left(xy+yz+xz\right)\ge\left(\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\right)^2\)
\(\Leftrightarrow3\ge\sqrt{xy}+\sqrt{yz}+\sqrt{xz}\)
Đăt \(\left(\sqrt{xy};\sqrt{yz};\sqrt{xz}\right)\rightarrow\left(a;b;c\right)\Rightarrow\left\{{}\begin{matrix}a,b,c>0\\a+b+c\le3\end{matrix}\right.\)
\(\Leftrightarrow\dfrac{a}{a^2\left(4-a^2\right)}+\dfrac{b}{b^2\left(4-b^2\right)}+\dfrac{c}{c\left(4-c^2\right)}\ge1\left(\odot\right)\)
Ta có BĐT phụ: \(\dfrac{a}{a^2\left(4-a^2\right)}\le-\dfrac{1}{9}a+\dfrac{4}{9}\)
\(\Leftrightarrow\dfrac{\left(a-1\right)^2\left(a^2-2a-9\right)}{9a\left(a-2\right)\left(a+2\right)}\le0\forall0< a\le1\)
Tương tự cho 2 BĐT còn lại rồi cộng theo vế:
\(VT_{\left(\odot\right)}\ge\dfrac{-\left(a+b+c\right)}{9}+\dfrac{4}{9}\cdot3\ge\dfrac{-3}{9}+\dfrac{12}{9}=1=VP_{\left(\odot\right)}\)
Dấu "=" \(\Leftrightarrow x=y=z=1\)