Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Komorebi

Cho ba số dương x,y,z thỏa mãn x + y + z = \(\dfrac{2019}{\sqrt{5}}\). Tìm GTNN của biểu thức : H = \(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+zx+2x^2}\)

Nguyen
21 tháng 2 2019 lúc 20:49

C/m: \(\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)

\(\Rightarrow2x^2+xy+2y^2\ge\dfrac{5}{4}\left(x^2+2xy+y^2\right)\)

\(\Leftrightarrow8x^2+4xy+8y^2\ge5x^2+10xy+5y^2\)

\(\Leftrightarrow3\left(x-y\right)^2\ge0\left(LĐ\right)\)

Vậy \(\sqrt{2x^2+xy+2y^2}\ge\dfrac{\sqrt{5}}{2}\left(x+y\right)\)

CMTT: \(\sqrt{2y^2+yz+2z^2}\ge\dfrac{\sqrt{5}}{2}\left(y+z\right)\);

\(\sqrt{2z^2+zx+2x^2}\ge\dfrac{\sqrt{5}}{2}\left(x+z\right)\)

Vậy H=\(\sqrt{2x^2+xy+2y^2}+\sqrt{2y^2+yz+2z^2}+\sqrt{2z^2+xz+2z^2}\ge\sqrt{5}\left(x+y+z\right)=2019\)Hmin=2019\(\Leftrightarrow x=y=z=\dfrac{\dfrac{2019}{\sqrt{5}}}{3}\)

 Mashiro Shiina
21 tháng 2 2019 lúc 20:50

Khos quas


Các câu hỏi tương tự
phạm kim liên
Xem chi tiết
Xem chi tiết
Angela jolie
Xem chi tiết
Dương Thanh Ngân
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
Xem chi tiết
phan thị minh anh
Xem chi tiết
Nguyễn Thu Trà
Xem chi tiết
Hoàng Linh Chi
Xem chi tiết