Chương I - Căn bậc hai. Căn bậc ba

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
phan thị minh anh

cho x,y,z là các số dương thay đổi thỏa mãn : xy+yz+zx=3xyz. tìm max

\(P=\dfrac{11x+4y}{4x^2-xy+2y^2}+\dfrac{11y+4z}{4y^2-yz+2z^2}+\dfrac{11z+4x}{4z^2-zx+2x^2}\)

Lightning Farron
16 tháng 4 2017 lúc 16:12

Cách giải khác:

Ta chứng minh bổ đề:

\(\dfrac{11x+4y}{4x^2-xy+2y^2}\le\dfrac{2}{x}+\dfrac{1}{y}\Leftrightarrow\left(x-y\right)^2\left(x+y\right)\ge0\)(Đúng)

Tương tự ta cho 2 BĐT còn lại ta cũng có:

\(\dfrac{11y+4z}{4y^2-yz+2z^2}\le\dfrac{2}{y}+\dfrac{1}{z};\dfrac{11z+4x}{4z^2-xz+2x^2}\le\dfrac{2}{z}+\dfrac{1}{x}\)

Cộng theo vế 3 BĐT trên ta có:

\(P\le\dfrac{3}{x}+\dfrac{3}{y}+\dfrac{3}{z}=\dfrac{3\left(xy+yz+xz\right)}{xyz}=9\)

Đẳng thức xảy ra khi \(x=y=z=1\)

Lightning Farron
16 tháng 4 2017 lúc 15:32

Câu hỏi của Neet - Toán lớp 10 | Học trực tuyến đổi biến (a,b,c)->(x,y,z) là y nhau


Các câu hỏi tương tự
phạm kim liên
Xem chi tiết
Rin Kayama
Xem chi tiết
Komorebi
Xem chi tiết
Xem chi tiết
Tuệ Lâm
Xem chi tiết
michelle holder
Xem chi tiết
Hoàng
Xem chi tiết
Dương Thanh Ngân
Xem chi tiết
Baekhyun
Xem chi tiết