Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(\frac{1}{xy}+\frac{1}{xz}\ge\frac{\left(1+1\right)^2}{xy+xz}=\frac{4}{x\left(y+z\right)}\)(1)
Lại có : \(x\left(y+z\right)\le\left(\frac{x+y+z}{2}\right)^2=4\)( theo AM-GM )
=> \(\frac{1}{x\left(y+z\right)}\ge\frac{1}{4}\)
=> \(\frac{4}{x\left(y+z\right)}\ge1\)(2)
Từ (1) và (2) => \(\frac{1}{xy}+\frac{1}{xz}\ge\frac{4}{x\left(y+z\right)}\ge1\)
=> \(\frac{1}{xy}+\frac{1}{xz}\ge1\)( đpcm )
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x=2\\y=z=1\end{cases}}\)