ta có \(a^3+a^3+1\ge3a^2.\)mấy cái khác tt bạn cộng vế theo vế là ra GTNN
ta có \(a^3+a^3+1\ge3a^2.\)mấy cái khác tt bạn cộng vế theo vế là ra GTNN
Cho a, b, c là các số dương thỏa mãn: ab + bc+ ca = 3
Tìm GTNN của: \(M=\frac{19a+3}{1+b^2}+\frac{19b+3}{1+c^2}+\frac{19c+3}{1+a^2}\)
cho a, b, c là các só thực dương thỏa mãn a+b+c=1. tìm GTNN của bt sau
\(P=\frac{a}{9b^2+1}+\frac{b}{9c^2+1}+\frac{c}{9a^2+1}\)
Cho a,b,c là 3 số thực thỏa mãn điều kiện a/b=c/a và a+b+c=abc tìm GTNN của a và nói rõ b,c bằng bao nhiêu thì a đạt GTNN
Cho các số nguyên dương a,b,c thỏa mãn: a+b+c=3
Tìm GTLN của P= \(\frac{a^3}{a^2+2bc}+\frac{b^3}{b^2+2ca}+\frac{c^3}{c^2+2ab}+3abc\)
Bài 1 : Cho hai số x,y thỏa mãn đẳng thức :
\(\left(x+\sqrt{x^2+2011}\right)\times\left(y+\sqrt{y^2+2011}\right)=2011\)TÌm x+y .
Bài 2 : Cho x>0,y>0 và \(x+y\ge6\). Tìm giá trị nhỏ nhất của biểu thức :
\(P=3x+2y+\frac{6}{x}+\frac{8}{y}\)
Bài 3 : Cho các số thực x,a,b,c thay đổi , thỏa mạn hệ :
\(\hept{\begin{cases}x+a++b+c=7\\x^2+a^2+b^2+c^2=13\end{cases}}\)TÌm giá trị lớn nhất và nhỏ nhất của x .
Bài 4 : Cho các số dương a,b,c . Chứng minh :
\(1< \frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< 2\)
Bài 5: Cho x,y là hai số thực thỏa mãn :(x+y)2+7.(x+y)+y2+10=0 . Tìm giá trị lớn nhất và nhỏ nhất của biểu thức A=x+y+1
Bài 6: Tìm giá trị nhỏ nhất biểu thức : \(P=\frac{x^4+2x^2+2}{x^2+1}\)
Bài 7 : CHo các số dương a,b,c . Chứng minh bất đẳng thức :
\(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}\ge4\times\left(\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b}\right)\)
Cho \(a,b,c\)là các số thực dương thỏa mãn \(ab+bc+ca=3abc\). Tìm giá trị nhỏ nhất của biểu thức \(K=\frac{a^2}{c\left(a^2+c^2\right)}+\frac{b^2}{a\left(a^2+b^2\right)}+\frac{c^2}{b\left(b^2+c^2\right)}\).
cho a, b, c là các số dương thỏa mãn điều kiện a+b+c=1 tìm GTNN của biểu thức
\(A=\frac{\left(1+a\right).\left(1+b\right).\left(1+c\right)}{\left(1-a\right).\left(1-b\right)\left(1-c\right)}\)
Cho 3 số a,b,c dương thỏa mãn \(\dfrac{1}{1+a}+\dfrac{35}{35+2b}\le\dfrac{4c}{4c+57}\).Tìm GTNN của biểu thức P=abc
CHO A,B,C,LÀ 3 SỐ THỰC DƯƠNG THỎA MÃN ĐK a +b + c = 1
Tìm GTNN của biểu thức P = \(\sqrt[]{\frac{ab}{c+ab}}\)+ \(\sqrt[]{\frac{bc}{a+bc}}\) +\(\sqrt{\frac{ca}{b+ca}}\)