$a^4+b^4+c^4+ab^3+bc^3+ca^3\geq 2(a^3b+b^3c+c^3b)$
BĐT cần cm $\Leftrightarrow a^4+b^4+c^4+ab^3+bc^3+ca^3- 2(a^3b+b^3c+c^3b)\geq 0$
$VT=\frac{1}{2}(a^2-b^2+bc-ba)^2+\frac{1}{2}(b^2-c^2+ac-bc)^2+\frac{1}{2}(c^2-a^2+ab-ac)^2\geq 0$
$a^4+b^4+c^4+ab^3+bc^3+ca^3\geq 2(a^3b+b^3c+c^3b)$
BĐT cần cm $\Leftrightarrow a^4+b^4+c^4+ab^3+bc^3+ca^3- 2(a^3b+b^3c+c^3b)\geq 0$
$VT=\frac{1}{2}(a^2-b^2+bc-ba)^2+\frac{1}{2}(b^2-c^2+ac-bc)^2+\frac{1}{2}(c^2-a^2+ab-ac)^2\geq 0$
Cho a,b,c dương. CMR:P=\(\frac{\left(a+b\right)^2}{b+3c}+\frac{\left(b+c\right)^2}{c+3a}+\frac{\left(c+a\right)^2}{a+3b}\ge a+b+c\)
cho a,b,c là các số thực . Cmr:
\(\dfrac{2a}{b+c}+\dfrac{2b}{a+c}+\dfrac{2c}{a+b}\ge3+\dfrac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\)
cho a,b,c là các số thực dương
Cmr: \(\dfrac{2a}{b}+\dfrac{2b}{c}+\dfrac{2c}{a}\ge3+\dfrac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\)
Cho a,b,c là các số thực .CMR:
\(a\left(a+b\right)\left(a^2+b^2\right)+b\left(b+c\right)\left(b^2+c^2\right)+c\left(c+a\right)\left(c^2+a^2\right)\)
Cho a,b,c là 3 số thực thỏa mãn \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\). CMR : \(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}=0\)
Cho 3 số thực a,b,c thỏa mãn \(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\) = 0. CMR
\(\frac{a}{\left(b-c\right)^2}+\frac{b}{\left(c-a\right)^2}+\frac{c}{\left(a-b\right)^2}\) = 0
1. Cho a,b,c > 0. Cmr :
\(\frac{a^3}{bc}+\frac{b^3}{ca}+\frac{c^3}{ab}\ge\frac{3\left(a^2+b^2+c^2\right)}{a+b+c}\)
2. Cho a,b,c > 0. Cmr :
\(\frac{a}{b+2c+3d}+\frac{b}{c+2d+3a}+\frac{c}{d+2a+3b}+\frac{d}{a+2b+3c}\ge\frac{2}{3}\)
Cho các số thực dương a,b,c. CMR
\(\frac{\left(b+c-a\right)^2}{\left(b+c\right)^2+a^2}+\frac{\left(a+c-b\right)^2}{\left(a+c\right)^2+b^2}+\frac{\left(b+a-c\right)^2}{\left(b+a\right)^2+c^2}\ge\frac{3}{5}\)
Bài 1: CMR với mọi số thực a; b; c thì:
\(\left(a+b\right)^6+\left(b+c\right)^6+\left(c+a\right)^6\ge\dfrac{16}{61}\left(a^6+b^6+c^6\right)\)\
Bài 2: Cho a;b;c là các cạnh của tam giác:
CMR: \(a^2b\left(a-b\right)+b^2c\left(b-c\right)+c^2a\left(c-a\right)\ge0\)
Giúp mk với các bạn ơi