cho a,b,c là các số thực dương
Cmr: \(\dfrac{2a}{b}+\dfrac{2b}{c}+\dfrac{2c}{a}\ge3+\dfrac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a+b+c\right)^2}\)
Bài 1: CMR với mọi số thực a; b; c thì:
\(\left(a+b\right)^6+\left(b+c\right)^6+\left(c+a\right)^6\ge\dfrac{16}{61}\left(a^6+b^6+c^6\right)\)\
Bài 2: Cho a;b;c là các cạnh của tam giác:
CMR: \(a^2b\left(a-b\right)+b^2c\left(b-c\right)+c^2a\left(c-a\right)\ge0\)
Giúp mk với các bạn ơi
Cho \(a,b,c>0\) thỏa mãn \(ab+bc+ca=3\) . CMR : \(\sqrt[3]{\dfrac{a}{b\left(b+2c\right)}}+\sqrt[3]{\dfrac{b}{c\left(c+2a\right)}}+\sqrt[3]{\dfrac{c}{a\left(a+2b\right)}\ge\dfrac{3}{\sqrt[3]{3}}}\)
Cho a,b,c là các số thực dương thỏa mãn điều kiện abc=1
Chứng minh rằng : \(P=\dfrac{1}{\left(a+1\right)^2}+\dfrac{1}{\left(b+1\right)^2}+\dfrac{1}{\left(c+1\right)^2}+\dfrac{2}{\left(a+1\right)\left(b+1\right)\left(c+1\right)}\ge1\)
Xét:
\(\dfrac{c}{a-b}.\left(\dfrac{a-b}{c}+\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)=1+\dfrac{c}{a-b}\left(\dfrac{b-c}{a}+\dfrac{c-a}{b}\right)=1+\dfrac{c}{a-b}.\dfrac{b^2-bc+ac-a^2}{ab}=1+\dfrac{c}{a-b}.\dfrac{c\left(a-b\right)-\left(a^2-b^2\right)}{ab}=1+\dfrac{c}{a-b}.\dfrac{\left(c-a-b\right)\left(a-b\right)}{ab}=1+\dfrac{c^2-c\left(a+b\right)}{ab}=1+\dfrac{2c^2}{ab}=1+\dfrac{2c^3}{abc}\)
CMTT cộng theo vế:
\(BTCCM=3+\dfrac{2\left(a^3+b^3+c^3\right)}{abc}=\dfrac{6\left(a^3+b^3+c^3\right)}{3abc}\)
Mà Khi \(a+b+c=0\) thì \(a^3+b^3+c^3=3abc\) ( tự cm,ez)
Vậy \(BTCCM=3+6=9\left(đpcm\right)\)
CMR nếu \(\left(a^2-bc\right).\left(b-abc\right)=\left(b^2-ac\right).\left(a-abc\right)\) và các số a, b, c, a-b khác 0 thì \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=a+b+c\)
Hứa tặng GP nha :))
I. BĐT:
1.Cho a,b,c là độ dài của ba cạnh tam giác CMR:
\(\left(a\right)a^2+b^2+c^2< 2\left(ab+bc+ca\right)\)
\(\left(b\right)\dfrac{a}{b+c-a}+\dfrac{b}{a+c-b}+\dfrac{c}{a+b-c}\ge3\)
\(\left(c\right)\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\)
2. Cho a, b, c, d > 0 và abcd = 1 CMR: \(a^2+b^2+c^2+d^2+ab+cd\ge6\)
3. \(\left(x-1\right)\left(x-3\right)\left(x-4\right)\left(x-6\right)+9\ge0\)
4. \(\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\le\dfrac{a+b +c}{2}\)
Cho a,b,c là các số nguyên khác nhau đôi một. CMR biểu thức sau có giá trị là 1 số nguyên: \(P=\dfrac{a^3}{\left(a-b\right).\left(a-c\right)}+\dfrac{b^3}{\left(b-a\right).\left(b-c\right)}+\dfrac{c^3}{\left(c-a\right).\left(c-b\right)}\)
Rút gọn biểu thức: \(A=\dfrac{2}{a-b}+\dfrac{2}{b-c}+\dfrac{2}{c-a}+\dfrac{\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2}{\left(a-b\right).\left(b-c\right).\left(c-a\right)}\)