Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
tống thị quỳnh

cho các số thực a;b;c thỏa mãn a+b+c\(\le6\)tìm gtln của biểu thức P=\(\frac{ab}{a+3b+2c}+\frac{bc}{b+3c+2a}+\frac{ca}{c+3a+2b}\)

Thiên An
1 tháng 5 2017 lúc 9:16

bài này ko khác gì câu 921427 nhé bạn, có điều bạn tìm cách tách a + 3b + 2c = (a + b) + (b + c) + (b + c)

Thêm nữa, áp dụng BĐT   \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)  với a, b, c > 0

Đẳng thức xảy ra khi và chỉ khi a = b = c.

Kiệt Nguyễn
20 tháng 2 2020 lúc 17:27

EZ!!!Sau khi sử dụng 1 số bđt đơn giản, ta sẽ được:

\(\text{Σ}_{cyc}\frac{ab}{a+3b+2c}\le\frac{1}{9}\text{Σ}_{cyc}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)=K\)

\(P\le K=\frac{1}{9}\left[\text{Σ}_{cyc}\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)+\frac{a+b+c}{2}\right]\)

\(=\frac{1}{9}\left(b+a+c+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}\le1\)

Dấu "=" xảy ra khi và chỉ khi a = b = c = 2

Khách vãng lai đã xóa

Các câu hỏi tương tự
Văn thành
Xem chi tiết
fairy
Xem chi tiết
pham trung thanh
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Kan
Xem chi tiết
hung
Xem chi tiết
Xem chi tiết
Xem chi tiết
pham trung thanh
Xem chi tiết