Câu 19: Cho a, b, c là các số thực sao cho:
( a+b+c)(ab+bc+ca)=2020 và abc=1=2020.
Tính P=(b2c+2020)(c2a+2020)(a2b+2020).
Cho các số thực a,b,c thỏa mãn a+b+c=ab+bc+ca=3 Chứng minh rằng a=b=c=1
cho a,b,c là các số thực thỏa mãn : ab+bc+ca = abc
và a+b+c =1.chứng minh rằng : (a-1).(b-1).(c-1)=0
các bạn giúp mình nhanh với
Cho các số thực không âm a, b, c thỏa mãn ab + bc + ca = 3. Chứng minh rằng (a + b)(b + c)(c + a) > 8
Cho các số thực x, y, z, a, b, c thỏa mãn: x+y+z=1; x2+y2+z2=1 và a/x=b/y=c/z.
Chứng minh rằng: ab + bc + ca =0
Cho a,b,c là các số thực thỏa mãn ab + bc + ac = abc và a + b + c = 1 .Chứng minh rằng (a - 1) (b - 1) (c - 1) = 0
Bài 1 :
a) Cho a , b , c là ba số thực thỏa mãn \(\left(a+b+c\right)^2=3\left(ab+bc+ca\right)\) . Chứng minh rằng a = b = c
b) Cho a , b , là ba số thực thỏa mãn a + b + c = 0 . Chứng minh rằng \(a^3+b^3+c^3=3abc\)
c) Cho a , b , c là ba số thực thỏa mãn \(a^3+b^3+c^3=3abc\) . Liệu có thể khẳng định rằng a + b + c = 0
Cho các số a, b, c khác 0 thỏa mãn abc khác 1 và -1 và (ab+1)/b+(bc+1)/c+(ca+1)/a. cm a=b=c
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1
Chứng minh rằng: \(\frac{a+bc}{b+c}+\frac{b+ca}{c+a}+\frac{c+ab}{a+b}\ge\)\(2\)