Cho a, b là các số thực thỏa mãn \(a^3+b^3\) − 6ab = −11. Chứng minh rằng \(\dfrac{-7}{3}\) < a + b < −2
Cho các số nguyên a, b, c, d thỏa mãn a3+b3=5(c3+7d3). CMR a+b+c+d chia hết cho 6
Cho các số thực a,b thoả mãn a 3 +b 3 −6ab = −11. Chứng minh rằng − 7 /3 < a+b < −2
Cho a, b là 2 số thực phân biệt thỏa mãn a2+4a=b2+4b=1. CMR
a, a+b=-4
b,a3+b3=-76
c, a4+b4=322
Thực hiện nhanh các phép chia:
a) ( a 2 - 6ab + 9 b 2 ) : (a - 3b);
b) ( a 3 -9 a 2 b + 27a b 2 - 27 b 3 ) : ( 3 b - a ) 2 .
cho a,b là 2 số thực phân biệt thỏa mãn a2-3a=b2-3b=1. Tính giá trị của:
a+b ; a2+b2 ; a3+b3 ; a4+b4 ; a5+b5 ; a6+b6
Cho a,b,c là các số thỏa mãn điều kiện a+b+c=1 và a3+b3+c3=1.
Tính giá trị biểu thức T=a2023+b2023+c2023
CMR :1,a2+b2=<a+b>2-2ab
2,a3+b3=<a+b>3-3ab.<a+b>
3,a3-b3=<a-b>3+3ab.<a+b>
Cho :a+b=1
Tính :A=a3+b3+3ab
Cho a>0: b≥ 0 thỏa mãn a3 + b3 = a – b. Tìm giá trị nhỏ nhất của biểu thức: M = 2017 – a3