Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nhóc vậy

Cho các số thực a, b, x, y thõa mãn: \(x^2+y^2=1;\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{a+b}\)

Chứng minh \(\frac{x^{2n}}{a^n}+\frac{y^{2n}}{b^n}=\frac{2}{\left(a+b\right)^n},\forall n\in N\)

vũ tiền châu
29 tháng 12 2017 lúc 18:36

áp dụng bđt svacxơ, ta có 

\(\frac{x^4}{a}+\frac{y^4}{b}\ge\frac{\left(x^2+y^2\right)^2}{a+b}=\frac{1}{a+b}\)

dấu = xảy ra <=>\(\frac{x^2}{a}=\frac{y^2}{b}\)

nên \(\frac{x^{2n}}{a^n}+\frac{y^{2n}}{b^n}=2.\frac{x^{2n}}{a^n}\)

,mặt khác, ta có \(\frac{2}{\left(a+b\right)^n}=2.\frac{1}{\left(a+b\right)^n}=2.\frac{\left(x^2+y^2\right)^n}{\left(a+b\right)^n}=2.\frac{\left(2.x^2\right)^n}{\left(2.a\right)^n}=2.\frac{2^2.x^{2n}}{2^2.a^n}=2.\frac{x^{2n}}{a^n}\)

từ 2 điều trên => \(\frac{x^{2n}}{a^n}+\frac{y^{2n}}{b^n}=\frac{2}{\left(a+b\right)^n}\)


Các câu hỏi tương tự
Nguyen Ngoc Van
Xem chi tiết
Nguyễn Phương Thảo
Xem chi tiết
Nguyễn Trang
Xem chi tiết
tống thị quỳnh
Xem chi tiết
Huê Trương
Xem chi tiết
Tri Khánh
Xem chi tiết
Xem chi tiết
Đinh Thị Ngọc Anh
Xem chi tiết
phan tuấn anh
Xem chi tiết