Xét các số phức z = a + bi (a,b ϵ R) thỏa mãn z - 4 - 3 i = z - - 2 + i . Tính P = a 2 + b 2 khi z + 1 - 3 i + z - 1 + i đạt giá trị nhỏ nhất.
A. P = 293/9
B. P = 449/32
C. P = 481/32
D. P = 137/9
Xét các số phức z = a + bi thỏa mãn z - 4 - 3 i = 5 . Tính P = a + b khi z + 1 - 3 i + z - 1 + i đạt giá trị lớn nhất
A. P = 10
B. P = 4
C. P = 6
D. P = 8
Cho số phức z thỏa mãn điều kiện ( 3 + 2 i ) z + ( 2 - i ) 2 = 4 + i . Tìm phần ảo của số phức w = ( 1 + + z ) z ¯ .
A. -2
B. 0.
C. -1
D. 1
Cho số phức z thoả mãn |z-1-i|=1 Khi 3|z|=2|z-4-4i| đạt giá trị lớn nhất. Tính |z|
A. 2 - 1
B. 2
C. 2 + 1
D. 3
Xét các số phức z = a + b i (a,bÎR) thỏa mãn z - 4 - 3 i = 5 . Tính a+b khi z + 1 - 3 i + z - 1 + i đạt giá trị lớn nhất
A. 10
B. 4
C. 6
D. 8
Cho số phức z thỏa mãn z − 1 − 3 i + 2 z − 4 + i ≤ 5. Khi đó số phức w = z + 1 − 11 i có môđun bằng bao nhiêu?
A.12.
B. 3 2
C. 2 3
D. 13
Cho số phức z thỏa mãn z − 1 − 3 i + 2 z − 4 + i ≤ 5 . Khi đó số phức w = z + 1 − 11 i có môdun bằng bao nhiêu?
A. 12
B. 3 2
C. 2 3
D. 13
Xét các số phức z = a + b i a , b ∈ R thỏa mãn |z-4-3i|=2. Khi |z+1-3i|+|z-1+i| đạt giá trị lớn nhất, giá trị của a – 2b bằng
A. 1
B. -2
C. - 5
D. -1
Cho số phức z thỏa mãn ( 2 − 3 i ) z + ( 4 + i ) z ¯ + ( 1 + 3 i ) 2 = 0 . Gọi a, b lần lượt là phần thực và phần ảo của số phức z. Khi đó 2 a - 3 b bằng
A. 1
B. 4
C. 11
D. -19
Xét các số phức z = a + b i a , b ∈ ℝ thỏa mãn điều kiện z − 4 − 3 i = 5. Tính P = a + b khi giá trị biểu thức z + 1 − 3 i + z − 1 + i đạt giá trị lớn nhất.
A. P = 10.
B. P = 4.
C. P = 6.
D. P = 8.