cho các số a, b, c thay đổi và thỏa mãn a+b+c=4
chứng minh \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}>4\)
Cho các số a, b, c thay đổi và thỏa mãn : a+b+c=4
chứng minh: \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{a+c}>4\)>4
Cho các số dương a.b.c thay đổi và thỏa mãn a+b+c=4
CMR: \(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}>4\)
cho a,b,c là các số dương thỏa mãn a+b+c= 4.Chứng minh rằng \(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}\ge2\sqrt{2}\)
Cho 3 số dương a,b,c thỏa mãn a=b+c. Chứng minh \(\sqrt[4]{a^3}< \sqrt[4]{b^3}+\sqrt[4]{c^3}\)
Cho các số dương a,b,c và luôn thỏa mãn: \(a+b+c=4\)
Chứng Minh Rằng :
\(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}>4\)
Cho a,b,c là các số dương thỏa mãn a+b+c=4.Chứng minh rằng:
\(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}>2\sqrt{2}\)
Bạn nào biết giúp mình với
Cho a,b,c là các số thực dương thỏa mãn a+b+c=1. Chứng minh rằng :
\(\sqrt{a+\frac{\left(b-c\right)^2}{4}}+\sqrt{b+\frac{\left(a-c\right)^2}{4}}+\sqrt{c+\frac{\left(a-b\right)^2}{4}}\le2\)
Cho các số dương a,b,c thỏa mãn a+b+c=4.Chứng minh \(\sqrt[4]{a^3}+\sqrt[4]{b^3}+\sqrt[4]{c^3}\ge2\sqrt{2}\)
mai mk thi rồi ai chúc mk đi