Cho các số nguyên a,b,c khác 0 thỏa mãn điều kiện: \(\frac{5b+2c\left(4+c^6\right)}{a+b+c}=1\)
Chứng minh rằng: a7+3b7-2c chia hết cho 7
cho các số nguyên dương a,b,c thỏa mãn \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{a+c-b}{b}\) giá trị của biểu thức T=\(\left(10+\frac{b}{a}\right)\left(4+\frac{2c}{b}\right)\left(2017+\frac{3a}{c}\right)\)
1. Cho 3 số dương a, b, c thỏa mãn ab + bc + ca = 3abc
Tính GTNN của bt : \(M=\frac{2\left(a^2b^2+b^2c^2+c^2a^2\right)+abc}{a^2b^2c^2}\)
2. Cho a, b, c\(\inℝ^+\)thỏa mãn a + b + c = 4. Cmr BĐT sau luôn đúng :
\(10\left(\frac{b}{a}+\frac{c}{b}+\frac{a}{c}\right)\ge\frac{4+5a}{4-a}+\frac{4+5b}{4-b}+\frac{4+5c}{4-c}\)
Cho ba số a, b, c khác 0 thoả mãn điều kiện: a + b + c = \(\frac{1}{abc}\)
Chứng minh rằng : \(\frac{\left(1+b^2c^2\right)\left(1+a^2c^2\right)}{c^2+a^2b^2c^2}=\left(a+b\right)^2\)
Cảm ơn mọi người nhiều ! ^.^
Cho 3 số a,b,c khác nhau đôi một và khác 0,đồng thời thỏa mãn điều kiện \(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\).Tính giá trị biểu thức A=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
cho các số khác 0 a,b,c thỏa mãn điều kiện :a+b+c=0
CMR
\(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}=\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2\)
3 số a,b,c khác nhau và khác 0 thỏa mãn điều kiện a+b+c=0
CMR \(\left(\frac{a-b}{c}+\frac{b-c}{a}+\frac{c-a}{b}\right)\left(\frac{c}{a-b}+\frac{a}{b-c}+\frac{b}{c-a}\right)=9\)
Cho các số dương a,b,c thỏa mãn a+b+c=1/abc
chứng minh rằng \(\sqrt{\frac{\left(1+b^2c^2\right)\left(1+a^2c^2\right)}{c^2+a^2b^2c^2}=a+b}\)
cho a,b,c khác nhau và khác 0 thỏa mãn điều kiện
\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
Tính giá trị của biểu thức A=\(\left(1+\frac{a}{b}\right)\left(1+\frac{b}{c}\right)\left(1+\frac{c}{a}\right)\)
giải giúp mk vs ạ