Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Trần Duy Vương

Cho các số nguyên dương a; b; c; d thỏa mãn a+b+c=2017

Chứng minh rằng gái trị biểu thức sau không phải là một số nguyên

\(A=\frac{a}{2017-c}+\frac{b}{2017-a}+\frac{c}{2017-b}\)

Ngu Ngu Ngu
7 tháng 4 2017 lúc 8:45

Thay \(a+b+c\) vào \(A\) ta được:

\(A=\frac{a}{2017-c}+\frac{b}{2017-a}+\frac{c}{2017-b}\)

\(=\frac{a}{a+b+c-c}+\frac{b}{a+b+c-a}+\frac{c}{a+b+c-b}\)

\(=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{a+c}\)

Ta có:

\(\frac{a}{a+b}< \frac{a+b}{a+b+c}\)

\(\frac{b}{b+c}< \frac{b+a}{a+b+c}\)

\(\frac{c}{c+a}< \frac{c+b}{a+b+c}\)

Cộng vế với vế ta được:

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}< \frac{a+c}{a+b+c}+\frac{b+a}{a+b+c}+\frac{c+b}{a+b+c}\)\(=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

\(\Rightarrow A< 2\left(1\right)\)

Lại có:

\(\frac{a}{a+b}>\frac{a}{a+b+c}\)

\(\frac{b}{b+c}>\frac{b}{a+b+c}\)

\(\frac{c}{c+a}>\frac{c}{a+b+c}\)

Cộng vế với vế ta lại được:

\(A=\frac{a}{a+b}+\frac{b}{b+c}+\frac{c}{c+a}>\frac{a}{a+b+c}+\frac{b}{a+b+c}+\frac{c}{a+b+c}\)\(=\frac{a+b+c}{a+b+c}=1\)

\(\Rightarrow A>1\left(2\right)\)

Từ \(\left(1\right);\left(2\right)\Rightarrow1< A< 2\)

Vậy \(A\) không phải là số nguyên (Đpcm)

Chester Jerry
7 tháng 4 2017 lúc 7:34

cái này chứng minh 1 < A < 2. mình chỉ bít chứng minh 1 < A thui 

Ta có \(\frac{a}{2017-c}>\frac{a}{2017};\frac{b}{2017-a}>\frac{b}{2017};\frac{c}{2017-b}>\frac{c}{2017}\) 

suy ra \(A>\frac{a}{2017}+\frac{b}{2017}+\frac{c}{2017}=\frac{2017}{2017}=1\)

=> A > 1


Các câu hỏi tương tự
Nguyễn Việt Bách
Xem chi tiết
Nguyễn Minh Vũ
Xem chi tiết
Phước Lộc
Xem chi tiết
Quân Thiên Vũ
Xem chi tiết
Lê Thế Tài
Xem chi tiết
Mai Phương Nguyễn
Xem chi tiết
Hoàng Văn Nam
Xem chi tiết
Phạm Hoàng Lan
Xem chi tiết
Manaka Mukaido
Xem chi tiết