bạn dựa vào bài tương tự này nha :
Cho a,b,c,d là các số nguyên dương thỏa mãn: ab=cd. Chứng minh rằng: A=anan+bnbn+cncn+dndn là hợp số với mọi số nguyên dương n.
langtuthattinh và The gunners thích#2 Nguyen Duc Thuan
Sĩ quan
Thành viên367 Bài viếtGiới tính:NamĐến từ:THPT Chuyên Hùng Vương, Phú ThọĐã gửi 06-02-2013 - 22:17
Vào lúc 06 Tháng 2 2013 - 22:04, 'hoangtubatu955' đã nói:
Cho a,b,c,d là các số nguyên dương thỏa mãn: ab=cd. Chứng minh rằng: A=anan+bnbn+cncn+dndn là hợp số với mọi số nguyên dương n.
Đặt (a;c)=q thì a=qa1;c=qc1a=qa1;c=qc1 (Vs (a1;c1a1;c1=1)
Suy ra ab=cd ⇔ba1=dc1⇔ba1=dc1
Dẫn đến d⋮a1d⋮a1 đặt d=a1d1d=a1d1 thay vào đc:
b=d1c1b=d1c1
Vậy an+bn+cn+dn=q2an1+dn1cn1+qncn1+an1dn1=(cn1+an1)(dn1+qn)an+bn+cn+dn=q2a1n+d1nc1n+qnc1n+a1nd1n=(c1n+a1n)(d1n+qn)
là hợp số (QED)