\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge2\Leftrightarrow\frac{1+1+1}{\left(1+1+1\right)xyz}=\frac{3}{3}.xyz=1xyz\)
mà P\(\ge2\)(vô lí)
=> MaxP=xyz=1
dap an dung la 1/8 nhá, có gì không hiểu hỏi sau
\(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge2\Leftrightarrow\frac{1+1+1}{\left(1+1+1\right)xyz}=\frac{3}{3}.xyz=1xyz\)
mà P\(\ge2\)(vô lí)
=> MaxP=xyz=1
dap an dung la 1/8 nhá, có gì không hiểu hỏi sau
Cho ba số dương x,y,z thỏa mãn \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge2\)..Tìm GTLN của xyz
Cho x,y,z dương thoả mãn \(\frac{1}{1+x}+\frac{1}{1+y}+\frac{1}{1+z}\ge2\)
Tìm Max P=xyz
Cho x, y, z là các số thực dương thỏa mãn: x + y + z = 1.
Tìm max của \(P=\frac{xy}{z+1}+\frac{yz}{x+1}+\frac{zx}{y+1}\)
Cho x,y,z>0 thỏa mãn \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge2\) CMR \(xyz\le8\)
a) Cho a, b, c là ba số nguyên dương nguyên tố cùng nhau thỏa mãn: \(\frac{1}{a}+\frac{1}{b}=\frac{1}{c}\) hỏi a + b có là số chính phương không? vì sao?
b) Cho x, y, z là các số dương thỏa mãn: z ≥ 60, x + y + z = 100. Tìm GTLN của A = xyz
Cho x, y, z là các số thực dương thỏa mãn xyz = 1. Chứng minh rằng
\(\frac{1-x}{x+2}+\frac{1-y}{y+2}+\frac{1-z}{z+2}\le0\)
Help me!
Cho x,y,z là các số thực dương thỏa mãn \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=3\)
Tìm max của \(P=\frac{1}{\sqrt{2x^2+y^2+3}}+\frac{1}{\sqrt{2y^2+z^2+3}}+\frac{1}{\sqrt{2z^2+x^2+3}}\)
Cho các số thực dương x,y,z thỏa mãn xyz = 1.
CMR: \(\frac{\sqrt{1+x^3+y^3}}{xy}+\frac{\sqrt{1+y^3+z^3}}{yz}+\frac{\sqrt{1+z^3+x^3}}{zx}\ge3\sqrt{3}\)
giả sử x,y,z là các số thực dương thỏa mãn x+y+z=xyz. cmr \(\frac{x}{1+x^2}+\frac{18y}{1+y^2}+\frac{4z}{1+z^2}\)=\(\frac{xyz\left(22x+5y+19z\right)}{\left(x+y\right)\left(y+z\right)\left(x+z\right)}\)