x+y=k (k là hằng số > 0)
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có :
\(P\ge\frac{\left[2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\right]^2}{2}\ge\frac{\left(2k+\frac{4}{x+y}\right)^2}{2}=\frac{\left(2k+\frac{4}{k}\right)^2}{2}=\frac{\left(\frac{2k^2+4}{k}\right)^2}{2}\)
Đẳng thức xảy ra <=> x = y = k/2
Vậy ...
k bằng bao nhiêu bạn tự thay số nhé :c mình chỉ làm dàn vậy thôi :>