cho x,y,z là các số dương thỏa mãn xyz>=x+y+z+2. tìm gtnn của x+y+z
Cho các số thực dương x,y,z thỏa mãn xyz ≥ 1.Tìm GTNN của \(P=\dfrac{x^3-1}{x^2+y+z}+\dfrac{y^3-1}{x+y^2+z}+\dfrac{z^3-1}{x+y+z^2}\)
Cho 3 số dương x,y,z thỏa mãn x+y+z=2. tìm GTNN của biểu thức : P = \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
cho các số thực dương x,y,z thỏa mãn x+y+z=3 .Tìm GTNN của biểu thức =\(\frac{1}{x^2+x}\)+\(\frac{1}{y^2+y}\)+\(\frac{1}{z^2+z}\)
Cho x,y,z là các số thực dương thỏa mãn \(x^2+y^2+z^2=3\).TIm GTNN của biểu thức \(A=\frac{x^2+1}{x}+\frac{y^2+1}{y}+\frac{z^2+1}{z}-\frac{1}{x+y+z}\)
Cho x,y,z là các số dương thỏa mãn x+y+z=3. Tìm GTNN của biểu thức
\(P=\frac{\left(x+y\right)\left(y+z\right)}{z+x}+\frac{\left(y+z\right)\left(z+x\right)}{x+y}+\)\(\frac{\left(z+x\right)\left(x+y\right)}{y+z}\)
Cho các số thức x,y,z thỏa mãn 2(y^2+yz+z^2)+3x^2=36.Tìm GTLN và GTNN của biểu thức A=x+y+z
Cho các số dương x,y,z thỏa mãn: x(x+1)+y(y+1)+z(z+1)\(\le18\)
Tìm GTNN của biểu thức: B= \(\frac{1}{x+y+1}+\frac{1}{y+z+1}+\frac{1}{z+x+1}\ge\frac{3}{5}\)
Cho các số thực x ; y ; z thỏa mãn x^2-y=a ; y^2-z=b ; z^2-x=c .Tính giá trị biểu thức sau theo a; b; c.
P=x^3 (z-y^2) + y^3 (x-z^2) + z^3 (y-x^2) + xyz (xyz-1)