Do \(a^x=bc;b^y=ca;c^z=ab\Rightarrow a^x.b^y.c^z=bc.ca.ab=a^2.b^2.c^2\)\(\Leftrightarrow\frac{a^2.b^2.c^2}{a^x.b^y.c^z}=1\Rightarrow\frac{a^2}{a^x}.\frac{b^2}{b^y}.\frac{c^2}{c^z}=1\)
Do a;b;c;x;y;z>0;a;b;c>1\(\Rightarrow\hept{\begin{cases}\frac{a^2}{a^x}=1\\\frac{b^2}{b^y}=1\\\frac{c^2}{c^z}=1\end{cases}}\Rightarrow\hept{\begin{cases}a^2=a^x\\b^2=b^y\\c^2=c^z\end{cases}}\Rightarrow x=y=z=2\)
\(\Rightarrow\hept{\begin{cases}x+y+z+2=2+2+2+2=4\\x.y.z=2.2.2=4\end{cases}}\Rightarrow x+y+z+2=xyz\)
Lê Thanh Minh làm sai rồi sao 2.2.2=4 được bằng 8 chứ
bài này dễ mà sao sai nhiều thế?