\(\left(7-d\right)^2=\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=3\left(13-d^2\right)\)
=>\(4d^2-14d+10\le0\)
=>\(\left(d-1\right)\left(4d-10\right)\le0\)
=>\(1\le d\le\frac{5}{2}\).Làm tương tự đối với a,b,c
\(\left(7-d\right)^2=\left(a+b+c\right)^2\le3\left(a^2+b^2+c^2\right)=3\left(13-d^2\right)\)
=>\(4d^2-14d+10\le0\)
=>\(\left(d-1\right)\left(4d-10\right)\le0\)
=>\(1\le d\le\frac{5}{2}\).Làm tương tự đối với a,b,c
Cho \(\hept{\begin{cases}a,b,c>0\\a+b+c=1\end{cases}}\)
Tìm giá trị nhỏ nhất của S= \(\frac{a^2+b}{b+c}+\frac{b^2+c}{c+a}+\frac{c^2+a}{a+b}\)
bài 1: Trong buổi lao động, 15 học sinh nam và nữ đã trồng được tất cả 180 cây. Biết rằng số cây các bạn nam trồng được số cây các bạn nữ trồng và mỗi bạn nam trồng nhiều hơn mỗi bạn nữ là 5 cây. Tính số bạn nam và nữ
bài 2:
1. Cho hệ phương trình \(\hept{\begin{cases}ax-y=2\\x+ay=3\end{cases}}\)
a) tìm a để hệ phương trình có nghiệm duy nhất và tìm nghiệm đó
b) tìm a để hệ phương trình vô nghiệm
2. cho hệ phương trình \(\hept{\begin{cases}ax-2y=a\\-2x+y=a+1\end{cases}}\)
a) tìm a để hệ phương trình có nghiệm duy nhất, khi đó tính x;y theo a
b) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn: x-y=1
c) tìm a để hệ phương trình có nghiệm duy nhất thỏa mãn x và y là các số nguyên
bài 3:
1.Chứng minh với mọi giá trị của m thì hệ phương trình \(\hept{\begin{cases}\left(m-1\right)x+y=2\\mx+y=m+1\end{cases}}\)(m là tham số) luôn có nghiệm duy nhất (x;y) thỏa mãn: \(2x+y\le3\)
2. Xác định giá trị của m để hệ phương trình \(\hept{\begin{cases}mx+5y=3\\x-3y=5\end{cases}}\)vô nghiệm
Cho a;b;c;d > 0 thỏa mãn đồng thời các đk \(\hept{\begin{cases}a^2+b^2=1\\\frac{a^4}{c}+\frac{b^4}{d}=\frac{1}{c+d}\end{cases}}\). CMR: \(\frac{a^2}{c}+\frac{d}{b^2}\ge2\)?
(P/s: Đang cần gấp nhé !)
Cho các số thực a,b,c thỏa mãn \(\hept{\begin{cases}a,b,c\in\left[0;2\right]\\a+b+c=3\end{cases}}\) thỏa mãn \(a^2+b^2+c^2\le5\)
Cho a,b,c,d nguyên không âm thỏa mãn: \(\hept{\begin{cases}a^2+2b^2+3c^2+4d^2=36\\2a^2+b^2-2d^2=6\end{cases}}\)Timf Min P=\(a^2+b^2+c^2+d^2\)
Ez one:
Cho \(\hept{\begin{cases}a,b,c>0\\a^2+b^2+c^2=12\end{cases}}\).Tìm giá trị lớn nhất của biểu thức:
\(S=a\sqrt[3]{b^2+c^2}+b\sqrt[3]{c^2+a^2}+c\sqrt[3]{a^2+b^2}\)
a) Giải phương trình \(\left(3x+2\right)\sqrt{2x-3}=2x^2+3x+6\)
b) Giải hệ phương trình \(\hept{\begin{cases}x^2+y^2=41\\\sqrt{x+y}-2\sqrt{x-y}=1\end{cases}}\)
c) Tìm a,b để biểu thức \(P=\frac{ax+b}{x^2+1}\)đạt giá trị nhỏ nhất bằng \(-1\)và giá trị lớn nhất bằng \(4\)
d) Cho các số thực dương a,b,c thỏa mãn \(abc=1\). Chứng minh rằng \(\frac{1}{a^5\left(b+2c\right)^2}+\frac{1}{b^5\left(c+2a\right)^2}+\frac{1}{c^5\left(a+2b\right)^2}\ge\frac{1}{3}\)
Cho hai số x, y thỏa mãn: \(\hept{\begin{cases}x+y\le2\\x^2+y^2+xy=3\end{cases}}\)
Tìm giá trị lớn nhất, giá trị nhỏ nhất của biểu thức: \(T=x^2+y^2-xy\)
Cho a,b,c , (a+b+c) là các số thực khác 0 thỏa mãn các điều kiện:
\(\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\\a^3+b^3+c^3=2^9\end{cases}}\)
Tính giá trị biểu thức A=a2013+b2013+c2013