\(\dfrac{a}{2020}=\dfrac{b}{2021}=\dfrac{c}{2022}=k\)
\(\Rightarrow\left\{{}\begin{matrix}a=2020k\\b=2021k\\c=2022k\end{matrix}\right.\)
\(VT=4\left(a-b\right)\left(b-c\right)=4\left(2020k-2021k\right)\left(2021k-2022k\right)=4.\left(-k\right).\left(-k\right)=4k^2\)
\(VP=\left(c-a\right)^2=\left(2022k-2020k\right)^2=\left(2k\right)^2=4k^2\)
\(\Rightarrow VT=VP=4k^2\)
\(\Rightarrowđpcm\)