\(b^2=ac\Rightarrow\frac{a}{b}=\frac{b}{c}\)
=> \(\frac{a}{b}=\frac{2013b}{2013c}=\frac{a+2013b}{b+2013c}\)
=> \(\frac{a}{b}.\frac{b}{c}=\frac{a+2013b}{b+2013c}.\frac{a+2013b}{b+2013c}\Rightarrow\frac{a}{c}=\left(\frac{a+2013b}{b+2013c}\right)^2\)
Ta có: \(b^2=a.c\)
Suy ra: \(b.b=a.c\)
Suy ra: \(\frac{a}{b}=\frac{b}{c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{2013b}{2013c}=\frac{a+2013b}{b+2013c}\)
Khi đó: \(\frac{\left(a+2013b\right)^2}{\left(b+2013c\right)^2}=\left(\frac{a+2013b}{b+2013c}\right)^2=\frac{a}{b}.\frac{b}{c}=\frac{a}{c}\)