Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;-1;3) và hai đường thẳng, d 1 : x - 4 1 = y + 2 4 = z - 1 - 2 , d 2 = x - 2 1 = y + 1 - 1 = z - 1 1 . Viết phương trình đường thẳng d đi qua A, vuông góc với đường thẳng d 1 và cắt đường thẳng d 2 .
A. d : x - 4 4 = y + 1 1 = z - 3 4
B. d : x - 1 2 = y + 1 1 = z - 3 3
C. d : x - 1 2 = y + 1 - 1 = z - 3 - 1
D. d : x - 1 - 2 = y + 1 2 = z - 3 3
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x - y - z - 1 = 0 và cho đường thẳng d : x + 1 2 = y - 1 1 = z - 2 3 , cho A(1; 1; -2). Viết phương trình đường thẳng đi qua A, song song với (P) và vuông góc với d
A. x - 1 2 = y - 1 5 = z + 2 3
B. x - 1 2 = y - 1 - 5 = z 2
C. x - 1 2 = y - 1 - 5 = z + 2 - 3
D. x - 1 2 = y - 1 5 = z + 2 - 3
Viết phương trình đường thẳng d đi qua điểm A(-4;-5;3) và cắt cả hai đường thẳng d 1 : x + 1 3 = y + 3 - 2 = z - 2 - 1 và d 2 : x - 2 2 = y + 1 3 = z - 1 - 5
A. x + 4 3 = y + 5 2 = z - 3 - 1
B. x + 4 5 = y + 5 4 = z - 3 7
C. x + 4 - 1 = y + 5 5 = z - 3 2
D. x + 4 - 2 = y + 5 3 = z - 3 2
Đường thẳng (d) vuông góc với m p ( P ) : x + y + z + 1 = 0 và cắt cả 2 đường thẳng x - 1 2 = y + 1 - 1 = z và d 2 : x - 2 y + z - 1 = 0 2 x - y - 2 z + 1 = 0 có phương trình là:
A. 2 x + y - 3 z + 1 = 0 x - 2 y + z = 0
B. 2 x + y - 3 z - 1 = 0 x - 2 y + z - 1 = 0
C. x + y - 3 z - 1 = 0 2 x - 2 y + z - 1 = 0
D. x + y - 3 z + 1 = 0 2 x - 2 y + z = 0
Trong không gian Oxyz, cho điểm A(1; 2; -1), đường thẳng d có phương trình x - 3 1 = y - 3 3 = z 2
và mặt phẳng (a) có phương trình x + y - z + 3 = 0 . Đường thẳng D đi qua điểm A , cắt d và song song với mặt phẳng (a) có phương trình là
A. x - 1 1 = y - 2 - 2 = z + 1 - 1
B. x - 1 1 = y - 2 2 = z + 1 1
C. x - 1 1 = y - 2 2 = z - 1 1
D. x - 1 - 1 = y - 2 - 2 = z + 1 1
Trong không gian Oxyz, cho các điểm A(1; –1;1); B(–1;2;3) và đường thẳng d: x + 1 - 2 = y - 2 1 = z - 3 3 . Đường thẳng ∆ đi qua điểm A, vuông góc với hai đường thẳng AB và d có phương trình là:
A. x - 1 2 = y + 1 4 = z - 1 7
B. x - 1 7 = y - 1 2 = z - 1 4
C. x - 1 2 = y + 1 7 = z - 1 4
D. x - 1 7 = y + 1 2 = z - 1 4
Cho điểm A(-4;1;3) và đường thẳng d : x + 1 - 2 = y - 1 1 = z + 3 3 . Viết phương trình mặt phẳng (P) qua A và vuông góc với đường thẳng d
A. 2 x - y - 3 z + 36 = 0
B. 2 x - y - 3 z - 18 = 0
C. 2 x - y + 3 z = 0
D. 2 x - y - 3 z + 18 = 0
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng ∆ là giao tuyến của hai mặt phẳng P : z - 1 = 0 và Q : x + y + z - 3 = 0 . Gọi d là đường thẳng nằm trong mặt phẳng P , cắt đường thẳng x - 1 1 = y - 2 - 1 = z - 3 - 1 và vuông góc với đường thẳng . Phương trình của đường thẳng d là
A. x = 3 + t y = t z = 1 + t
B. x = 3 - t y = t z = 1
C. x = 3 + t y = t z = 1
D. x = 3 + t y = - t z = 1 + t
Trong không gian Oxyz cho đường thẳng d: x 2 = y 2 = z + 3 - 1 và mặt cầu (S): ( x - 3 ) 2 + ( y - 2 ) 2 + ( z - 5 ) 2 = 36 . Gọi Δ là đường thẳng đi qua A(2;1;3) vuông góc với đường thẳng (d) và cắt (S) tại 2 điểm có khoảng cách lớn nhất. Khi đó đường thẳng Δ có một vectơ chỉ phương là u → ( 1 ; a ; b ) . Tính a + b
A. 4
B. -2
C. - 1 2
D. 5