Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Thị Kiều Thanh

cho các điểm A1,A2,A3 nằm trên đường thẳng a: các điểm B1,B2,B3,B4 nằm trên dường thẳng b.Hãy xác định số tam giác có ba đỉnh là ba trong số 7 điểm nói trên

Nguyễn Lê Phước Thịnh
8 tháng 4 2023 lúc 14:31

Số tam giác có được là:

\(C^2_3\cdot C^1_4+C^1_3\cdot C^2_4=30\)

Vũ Đào
8 tháng 4 2023 lúc 17:47

1 tam giác có 3 đỉnh ko thẳng hàng.

Theo NL Đi-rích-lê, có 3 điểm, 2 đường thẳng => Có 1 đường thẳng chứa 2 điểm, đường thẳng kia chứa điểm còn lại

Ta chia trường hợp:

*TH1: 2 điểm trên đường thẳng a, 1 điểm trên đường thẳng b

+) Điểm 1 trên a có 3 cách chọn

Điểm 2 trên a có 2 cách chọn

+) Điểm 1 trên b có 1 cách chọn

=> Tạo được 3.2.1 = 6 (tam giác)
*TH2: 1 điểm trên a, 2 điểm trên b

+) Điểm 1 trên a có 1 cách chọn

+) Điểm 1 trên b có 4 cách chọn

Điểm 2 trên b có 3 cách chọn

=> Tạo được 1.3.4 = 12 (tam giác)

Vậy tạo được tất cả 6+12=18 tam giác từ 7 điểm trên.


Các câu hỏi tương tự
Vũ Việt Hà
Xem chi tiết
Trần Minh Khôi
Xem chi tiết
Nguyễn Thị Ghost
Xem chi tiết
Trần mai tuyền
Xem chi tiết
Nguyễn Minh Phương
Xem chi tiết
Trần Trọng Nguyên
Xem chi tiết
huonglai
Xem chi tiết
LinhBQchannel
Xem chi tiết
Nguyễn Đình Phong
Xem chi tiết