Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Vũ Nam Khánh

Cho  C = \(4^1+4^2+4^3+4^4+..+4^{2016}\) .     

Chứng minh C chia hết cho 105. help me

Trần Ngọc Ánh
31 tháng 3 2018 lúc 20:52

Cách làm như sau:

-Chứng minh C chia hết cho 5 bằng cách nhóm 2 số vào một cặp

-Chứng minh C chia hết cho 21 bằng cách nhóm 3 số vào một cặp

Mà 21 và 5 nguyên tố cùng nhau =>C chia hết cho 21.5 => C chia hết cho 105(đpcm)

Phùng Minh Quân
31 tháng 3 2018 lúc 10:27

Ta có : 

\(C=4^1+4^2+4^3+4^4+...+4^{2016}\)

\(C=\left(4^1+4^2\right)+\left(4^2+4^3\right)+...+\left(4^{2015}+4^{2016}\right)\)

\(C=4\left(1+4\right)+4^2\left(1+4\right)+...+4^{2015}\left(1+4\right)\)

\(C=4.5+4^2.5+...+4^{2015}.5\)

\(C=5\left(4+4^2+...+4^{2015}\right)⋮5\) \(\left(1\right)\)

Lại có : 

\(C=4^1+4^2+4^3+4^4+...+4^{2016}\)

\(C=\left(4^1+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+...+\left(4^{2014}+4^{2015}+4^{2016}\right)\)

\(C=4\left(1+4+16\right)+4^4\left(1+4+16\right)+...+4^{2014}\left(1+4+16\right)\)

\(C=4.21+4^4.21+...+4^{2014}.21\)

\(C=21\left(4+4^4+...+4^{2014}\right)⋮21\) \(\left(2\right)\)

Từ (1) và (2) suy ra : \(C⋮5\) và \(C⋮21\)

\(\Rightarrow\)\(C⋮5.21=105\)

\(\Rightarrow\)\(C⋮105\)

Vậy \(C⋮105\)

Chúc bạn học tốt ~ 


Các câu hỏi tương tự
Cao thủ vô danh thích ca...
Xem chi tiết
Nghi PiPo
Xem chi tiết
FM Vũ Cát Tường
Xem chi tiết
TH
Xem chi tiết
 Ƹ̴Ӂ̴Ʒ εїзBest Friend Ƹ̴...
Xem chi tiết
Nguyễn Thu Hương
Xem chi tiết
Yuari Hazami
Xem chi tiết
Nguyễn Đạt
Xem chi tiết
quỳnh
Xem chi tiết