cho \(\frac{x^4}{a}+\frac{y^4}{b}=\frac{1}{\left(a+b\right)},x^2+y^2=2\)
CMR: \(\frac{x^{2016}}{a^{1008}}+\frac{y^{2016}}{b^{1008}}=\frac{2}{\left(a+b\right)^{1008}}\)
cho 4 số a,b,c,d > o thỏa mãn a^4/b+c^4/d=1/b+d và a^2+c^2=1. chứng minh rằng a^2016/b^1006+c^2016/d^1008=2/(b+d)^1008
Cho a,b,c,d\(\in\)N* ,a2+c2=1 và \(\frac{a^4}{b}+\frac{c^4}{d}=\frac{1}{b+d}\)CMR:
\(\frac{a^{2016}}{b^{1008}}+\frac{c^{2016}}{d^{1008}}=\frac{2}{\left(b+d\right)^{1008}}\)
CMR nếu a/b=c/d thì a^2016+3b^2016/c^2016+3d^2016=(a^2+2b^2/c^2+2d^2)^1008
CMR nếu a/b=c/d thì a^2016+3b^2016/c^2016+3d^2016=(a^2+2b^2/c^2+2d^2)^1008
\(\dfrac{x+2016}{5}\)-\(\dfrac{x+2016}{3}=\dfrac{x}{2}+1008\)
\(A=\frac{[(\frac{2}{1001}-\frac{3}{2002})\frac{1001}{17}+\frac{33}{34}]}{[(\frac{7}{1008}+\frac{11}{2016})\frac{1008}{25}+\frac{1009}{2016}]}\)
A=\(\frac{[\left(\frac{2}{1000}-\frac{3}{2002}\right)\frac{1001}{17}+\frac{33}{44}]}{[\left(\frac{7}{1008}+\frac{11}{2016}\right)\frac{1008}{25}+\frac{1009}{2016}]}\)
Tìm x :
x+2016/căn bậc hai của 25 - x+|-2016|/3 = x/2+1008
Giúp mk vs ạ, cho mk lời giải chi tiết nhé!
Hơi khó hiểu tí ạ
Thanksssssss