Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
công chúa xinh đẹp

cho biểu thức P=\(\text{[}\frac{x^2+2x}{x^3+2x^2+4x+8}+\frac{2}{x^2+4}\text{]}\)] :\(\text{[}\frac{1}{x-2}-\frac{4x}{x^3-2x^2+4x-8}\text{]}\)\(\text{[}x\ne+-2\)]

a.rút gọn p              b.tìm giá trị số nguyên của x để p nhận giá trị là số nguyên tố

 

Minh Nguyen
23 tháng 7 2020 lúc 13:22

a)  \(ĐKXĐ:x\ne\pm2\)

\(P=\left[\frac{x^2+2x}{x^3+2x^2+4x+8}+\frac{2}{x^2+4}\right]:\left[\frac{1}{x-2}-\frac{4x}{x^3-2x^2+4x-8}\right]\)

\(\Leftrightarrow P=\left(\frac{x}{x^2+4}+\frac{2}{x^2+4}\right):\left(\frac{1}{x-2}-\frac{4x}{\left(x-2\right)\left(x^2+4\right)}\right)\)

\(\Leftrightarrow P=\frac{x+2}{x^2+4}:\frac{x^2+4-4x}{\left(x-2\right)\left(x^2+4\right)}\)

\(\Leftrightarrow P=\frac{\left(x+2\right)\left(x-2\right)\left(x^2+4\right)}{\left(x^2+4\right)\left(x-2\right)^2}\)

\(\Leftrightarrow P=\frac{x+2}{x-2}\)

b) P là số nguyên tố khi và chỉ khi \(x+2⋮x-2\)

\(\Leftrightarrow4⋮x-2\)

\(\Leftrightarrow x-2\inƯ\left(4\right)=\left\{\pm1;\pm2;\pm4\right\}\)

\(\Leftrightarrow x\in\left\{1;3;0;4;-2;6\right\}\)

Loại \(x=-2\)

\(\Leftrightarrow P\in\left\{-3;5;-1;3;2\right\}\)

Vì P là số nguyên tố nên

\(P\in\left\{5;3;2\right\}\)

Vậy để P là số nguyên tố thì  \(x\in\left\{3;4;6\right\}\)

Khách vãng lai đã xóa

Các câu hỏi tương tự
thubong06
Xem chi tiết
Nguyễn Việt Hà
Xem chi tiết
17062007 anime
Xem chi tiết
nguyễn văn b
Xem chi tiết
Lý Gia Hân
Xem chi tiết
Yến Nhi Ngọc Hoàng
Xem chi tiết
Đỗ Thị Hải Yến
Xem chi tiết
sOKn0340
Xem chi tiết
Ngọc Duyên
Xem chi tiết