bn hok pt bậc 2 chưa để mình gải theo cách đó
Ta có: \(P=\frac{x^2-2x+2016}{x^2}=\frac{1}{x^2}\left(x^2-2x+2016\right)\)
Tìm GTNN:
Ta dễ thấy P nhỏ nhất khi \(x^2-2x+2016\) bé nhất
Ta có: \(x^2-2x+2016\)
\(=x^2-2x+1+2015\)
\(=\left(x^2-2x+1\right)+2015\)
\(=\left(x-1\right)^2+2015\ge2015\) (do \(\left(x-1\right)^2\ge0\forall x\))
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\Leftrightarrow x=1\)
Thay x = 1 vào biểu thức,ta có: \(P=\frac{1}{x^2}\left[\left(x-1\right)^2+2015\right]\ge2015\)
Vậy \(P_{min}=2015\Leftrightarrow x=1\)
Còn về tìm GTLN thì ta thấy không tìm được vì \(x\ge1\)