a/ \(\sqrt{ab}+\sqrt{a}-\sqrt{b}\)
b/ \(\sqrt{ab}+\sqrt{a}-\sqrt{b}=2\)
\(\Leftrightarrow\left(\sqrt{a}-1\right)\left(\sqrt{b}+1\right)=1\)
Xong rồi nhá
a/ \(\sqrt{ab}+\sqrt{a}-\sqrt{b}\)
b/ \(\sqrt{ab}+\sqrt{a}-\sqrt{b}=2\)
\(\Leftrightarrow\left(\sqrt{a}-1\right)\left(\sqrt{b}+1\right)=1\)
Xong rồi nhá
Rút gọn biểu thức:
A= \(\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{3\sqrt{ab}}{a\sqrt{a}+b\sqrt{b}}\right).\left[\left(\frac{1}{\sqrt{a}-\sqrt{b}}-\frac{3\sqrt{ab}}{a\sqrt{a}-b\sqrt{b}}\right):\frac{a-b}{a+\sqrt{ab}+b}\right]\)
Rút gọn biểu thức:
A= \(\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{3\sqrt{ab}}{a\sqrt{a}+b\sqrt{b}}\right).\left[\left(\frac{1}{\sqrt{a}-\sqrt{b}}-\frac{3\sqrt{ab}}{a\sqrt{a}-b\sqrt{b}}\right):\frac{a-b}{a+\sqrt{ab}+b}\right]\)
\(\left(\frac{1}{\sqrt{a}+\sqrt{a+1}}+\frac{1}{\sqrt{a}-\sqrt{a-1}}\right):\left(1+\sqrt{\frac{a+1}{a-1}}\right)\)
\(\left(\frac{\left(\sqrt{a}+1\right)\left(a-\sqrt{ab}\right)\left(\sqrt{a}+\sqrt{b}\right)}{\left(\sqrt{a^3}+3\right)\left(a-b\right)}\right)\)
Rút gọn 2 biểu thức trên?
Ai giúp mình với, tks nhiều
Rút gọn biểu thức:
\(a,\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1-\sqrt{a}}{1-a}\right)^2\)
\(b,\frac{2}{\sqrt{ab}}:\left(\frac{1}{\sqrt{a}}-\frac{1}{\sqrt{b}}\right)^2-\frac{a+b}{\left(\sqrt{a}-\sqrt{b}\right)^2}\)
Cho biểu thức: \(A=\frac{\left(\sqrt{x}+1\right)^2+\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\frac{3\sqrt{x}+1}{x-1}\)với \(x\ge0;x\ne1\)
a) Rút gọn biểu thức A
b) Tìm x là số chính phương để 2019A là số nguyên
\(\)Cho biểu thức
\(B=\left(\frac{1}{\sqrt{a}+\sqrt{b}}+\frac{3\sqrt{ab}}{a\sqrt{a}+b\sqrt{b}}\right)\left(\left(\frac{1}{\sqrt{a}-\sqrt{b}}-\frac{3\sqrt{ab}}{a\sqrt{a}-b\sqrt{b}}\right):\frac{a-b}{a+\sqrt{ab}+b}\right)\)
a, Rút gọn B
b, Tính B khi a=16, b=4
cho biểu thức:
\(A=\left(1-\frac{3\sqrt{b}-\sqrt{ab}}{\sqrt{a}-3}\right)\left(1-\frac{b-2\sqrt{b}}{2-\sqrt{b}}\right)\)
a) tìm điều kiện của a và b để biểu thức A có nghĩa
b) rút gọn biểu thức A
1/ Rút gọn biểu thức:\(G=\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{x+\sqrt{x}}\right)\div\frac{\sqrt{x}+1}{x}\)
2/ Cho biểu thức: \(M=x-\frac{2x-2\sqrt{x}}{\sqrt{x}-1}+\frac{x\sqrt{x}+1}{x-\sqrt{x}+1}+1\)
a. Tìm ĐKXĐ
b. Rút gọn M
c. Tìm giá trị nhỏ nhất của M
3/ Chứng minh: \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{\left(a+b\right)^2}}=|\frac{1}{a}+\frac{1}{b}+\frac{1}{a+b}|\)với \(a\ne0,b\ne0,a+b\ne0\)
4/ Biết a,b,c là số dương và ab + bc + ac =1. Hãy tính tổng:
\(M=a\sqrt{\frac{\left(1+b^2\right)\left(1+c^2\right)}{1+a^2}}+b\sqrt{\frac{\left(1+a^2\right)\left(1+c^2\right)}{1+b^2}}+c\sqrt{\frac{\left(1+a^2\right)\left(1+b^2\right)}{1+c^2}}\)
Bài 1: Rút gọn biểu thức:
\(A=\frac{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}-2}{a^3-3a+\left(a^2-1\right)\sqrt{a^2-4}+2}\left(a>2\right)\)
\(B=\sqrt{\frac{1}{a^2+b^2}+\frac{1}{\left(a+b\right)^2}+\sqrt{\frac{1}{a^4}+\frac{1}{b^4}+\frac{1}{\left(a^2+b^2\right)^2}}}\left(ab\ne0\right)\)
Bài 2: Tính giá trị của biểu thức:
\(E=\frac{1}{1\sqrt{2}+2\sqrt{1}}+\frac{1}{2\sqrt{3}+3\sqrt{2}}+\frac{1}{3\sqrt{4}+4\sqrt{3}}+...+\frac{1}{2017\sqrt{2018}+2018\sqrt{2017}}\)
Bài 3: Chứng minh rằng các biểu thức sau có gúa trị là số nguyên
\(A=\left(\sqrt{57}+3\sqrt{6}+\sqrt{38}+6\right)\left(\sqrt{57}-3\sqrt{6}-\sqrt{38}+6\right)\)
\(B=\frac{2\sqrt{3+\sqrt{5-\sqrt{13+\sqrt{48}}}}}{\sqrt{6}+\sqrt{2}}\)