a: \(P=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}\cdot\dfrac{a+2}{a-2}\)
\(=\dfrac{2a+4}{a-2}\)
b: Để P nguyên thì \(2a-4+8⋮a-2\)
\(\Leftrightarrow a-2\in\left\{-2;-1;1;2;4;8\right\}\)
hay \(a\in\left\{0;3;4;6;10\right\}\)
a: \(P=\dfrac{a+\sqrt{a}+1-a+\sqrt{a}-1}{\sqrt{a}}\cdot\dfrac{a+2}{a-2}\)
\(=\dfrac{2a+4}{a-2}\)
b: Để P nguyên thì \(2a-4+8⋮a-2\)
\(\Leftrightarrow a-2\in\left\{-2;-1;1;2;4;8\right\}\)
hay \(a\in\left\{0;3;4;6;10\right\}\)
bài 1: cho biểu thức: P=\(\frac{3a+\sqrt{9a}-3}{a+\sqrt{a}-2}-\frac{\sqrt{a}+1}{\sqrt{a}+2}+\frac{\sqrt{a}-2}{1-\sqrt{a}}\)
a) Rút gọn P
b) Tìm các giá trị nguyên của a để P nguyên
bài 2: cho biểu thức: P=\(\frac{\sqrt{a+4\sqrt{a-4}}+\sqrt{a-4\sqrt{a-4}}}{\sqrt{1-\frac{8}{a}+\frac{16}{a^2}}}\)
a) Rút gọn P
b) Tìm các giá trị nguyên của a (a>8) để P nguyên
Cho biểu thức A= \(\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}+\frac{2}{a-1}\right)\)
Rút gọn được \(\frac{a-1}{\sqrt{a}}\)
a, Tính giá trị của A khi a= 2\(\sqrt{2}+3\)
b, Tìm a để A = a-2
Cho biểu thức A = \(\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}+\frac{2}{a-1}\right)\)
a, Tính giá trị của A khi a = \(2\sqrt{2}+3\)
b, Tìm a để A =a-2
Kết quả rút gọn của A được \(\frac{a-1}{\sqrt{a}}\)
1) A=\(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}+\left(\sqrt{a}-\frac{1}{\sqrt{a}}\right)\left(\frac{\sqrt{a}+1}{\sqrt{a}-1}+\frac{\sqrt{a}-1}{\sqrt{a}+1}\right)\)
a. Rút gọn A b. Tìm a để A=7 c. Tìm a để A>6
2) A=\(\frac{15\sqrt{x}-11}{x+2\sqrt{x}-3}+\frac{3\sqrt{x}-2}{1-\sqrt{x}}-\frac{2\sqrt{x}+3}{3+\sqrt{x}}\)
a. Rút gọn A b. tìm x để A<0
3)\(A=\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)
a. Rút gọn A b. Tìm a để A=2 c. Tìm giá trị nhỏ nhất của A
GIÚP MÌNH ĐI MẤY PẠN !!! THKS NHÌU
Cho biểu thức
A= \(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2\left(\frac{\sqrt{a}-1}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
a, Rút gọn A
b, Tìm a để A<0
c, Tìm a để A=-2
Cho biểu thức
A= \(\left(\frac{1}{1-\sqrt{x}}-\frac{1}{\sqrt{x}}\right):\left(\frac{2x+\sqrt{x}-1}{1-x}+\frac{2x\sqrt{x}+x-\sqrt{x}}{1+x\sqrt{x}}\right)\) với x>0, x\(\ne\frac{1}{4}\), \(x\ne1\)
a)Rút gọn biểu thức A
b) Tính giá trị của A khi x =\(17-12\sqrt{2}\)
c) So sánh A với \(\sqrt{A}\)
\(A=\left(\frac{a\sqrt{a}-1}{a-\sqrt{a}}-\frac{a\sqrt{a}+1}{a+\sqrt{a}}\right):\frac{a+2}{a-2}\)
a) tìm đkxđ
b) rút gọ biểu thức
c) Với giá trị nguyên nào của a thì A đạt giá trị nhỏ nhất .
1/ Cho các số thực dương a,b với a khác b. Chứng minh đẳng thức sau:
\(\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}+\frac{3a+3\sqrt{ab}}{b-a}=0\)
2/ Cho hai số thực a,b sao cho \(\left|a\right|\ne\left|b\right|\) và ab \(\ne\) 0 thỏa mãn điều kiện:
\(\frac{a-b}{a^2+ab}+\frac{a+b}{a^2-ab}=\frac{3a-b}{a^2-b^2}\). Tính giá trị của biểu thức \(P=\frac{a^3+2a^2b+3b^3}{2a^3+ab^2+b^3}\)
Cho biểu thức
A= \(\frac{a^2+\sqrt{a}}{a-\sqrt{a}+1}-\frac{2a+\sqrt{a}}{\sqrt{a}}+1\)
a, Rút gọn A
b, Tìm a để A=2
c, Tìm giá trị nhỏ nhất của A