a: \(K=\dfrac{3x+3-4x-2-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-x^2+x}{\left(x-1\right)\left(x+1\right)}=\dfrac{-x}{x+1}\)
a: \(K=\dfrac{3x+3-4x-2-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\)
\(=\dfrac{-x^2+x}{\left(x-1\right)\left(x+1\right)}=\dfrac{-x}{x+1}\)
Cho biểu thức: F= \(\dfrac{x}{x-1}-\dfrac{4x^2+2}{1-x^2}-\dfrac{x-2}{x+1}\) với x≠+_1
a) chứng minh rằng: F=\(\dfrac{4x}{x-1}\)
b) tính giá trị của F khi lx+2l=1
c) tìm GTLN của biểu thức: K= F(x-1)-x2-2021
1) Cho biểu thức : A=\(\dfrac{4x^2}{x^2-4}\)+\(\dfrac{1}{x+2}\)-\(\dfrac{1}{x-2}\) (Với x≠2 và x≠ -2)
a.Rút gọn biểu thức A.
b. Tính giá trị của biểu thức A khi x=4.
2) Rút gọn biểu thức A=\(\dfrac{x}{x-1}\)+\(\dfrac{3}{x+1}\)+\(\dfrac{3-5x}{x^2-1}\) , với x≠ -1 và x≠1
3) Rút gọn biểu thức P=\(\dfrac{2}{x-2}\)+\(\dfrac{1}{x+2}\)\(\dfrac{6+5x}{4-x^2}\), với x≠ -2 và x≠ 2
4) Cho biểu thỨC : A= \(\dfrac{2x}{x^2-25}\)+\(\dfrac{5}{5-x}\)-\(\dfrac{1}{x+5}\)( với x≠5 và x≠ -5)
a. Rút gọn biểu thức A
b. Tính giá trị của biểu thức A khi x=\(\dfrac{4}{5}\).
5) Cho biểu thức : M =\(\dfrac{x^2}{x^2+2x}\)+\(\dfrac{2}{x+2}\)+\(\dfrac{2}{x}\) ( với x ≠0 và x≠ -2)
a. Rút gọn biểu thức M
b. Tính giá trị của biểu thức M khi: x=\(-\dfrac{3}{2}\)
MN BIẾT LÀM CÂU NÀO THÌ LÀM CÂU ĐÓ CŨNG ĐƯỢC AH!
Cho 2 biểu thức A = \(\dfrac{3x+2}{x}\)và B = \(\dfrac{x^2+1}{x^2-x}-\dfrac{2}{x-1}\)với x≠0, 1.
a) Tính giá trị của biểu thức A khi x = \(\dfrac{2}{3}\) .
b) Chứng minh B = \(\dfrac{x-1}{x}\) .
c) Đặt P = A: B. Tìm x nguyên để P có giá trị nguyên nhỏ nhất.
Cho 2 biểu thức:
A=\(\dfrac{5}{x+2}+\dfrac{3}{2-x}-\dfrac{15-x}{4-x^2}\) B=\(\dfrac{2x+1}{x^2-4}\)
a) Tính giá trị của biểu thức B khi x thỏa mãn \(|4x-2|=6\)
b)Rút gọn biểu thức A
c)Tìm x để P=\(\dfrac{2A}{B}>1\)
Cho hai biểu thức: A= \(\dfrac{1}{x-1}+\dfrac{-4}{x+1}+\dfrac{8x}{x^2-1}\) với x ≠ ±1
a) Chứng minh rằng A= \(\dfrac{5}{x-1}\)
b) Tính giá trị của A tại x thỏa mãn điều kiện |x-2|=3
c) Tìm giá trị nguyên của x để A có giá trị là một số nguyên.
Cho hai biểu thức A = \(\dfrac{x^2+x}{3\left(x+3\right)}\) và B = \(\dfrac{1}{x+1}-\dfrac{1}{1-x}-\dfrac{3-x}{x^2-1}\) với x ≠ -3; -1, 1
a) Tính giá trị của biểu thức A khi | x + 4 | = 1
b) Rút gọn biểu thức B
c) Tìm các giá trị của x để B.A <1
Cho biểu thức A=(\(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\)):(x-2 + \(\dfrac{10-x^2}{x+2}\))
a)Rút gọn A
b)Tính giá trị x của A với giá trị của x thỏa mãn |2x-1|=3
c) Tìm x để (3-4x).A<3
d) Tìm giá trị nhỏ nhất của biểu thức B=(8-\(^{x^3}\)).A+x
Cho biểu thức A = \(\left(\dfrac{x^2}{x^3-4x}+\dfrac{6}{6-3x}+\dfrac{1}{x+2}\right):\dfrac{6}{x+2}\)
a Rút gọn biểu thức A
b .Tính giá trị biểu thức A khi x = 3, x = 2
c Tính giá trị của x để A = 2
Cho 2 biểu thức A = \(\dfrac{x^2+4}{x-4}\)và B = \(\dfrac{4+x}{4-x}-\dfrac{4-x}{4+x}+\dfrac{4x^2}{16-x^2}\)
a. Tính giá trị của A khi \(\left|x-1\right|\)= 3
b. Tìm điều kiện xác định và rút gọn biểu thức B
c. Tìm x để A + B > 0