Ta có M = \(\frac{2}{1+\sqrt{a}}\le2\)
Mà để 18M là số chính phương thì M = 2
=> \(\frac{2}{1+\sqrt{a}}\)=2
=> 1 + \(\sqrt{a}\)=1
<=> \(\sqrt{a}=0\Rightarrow a=0\)( thỏa mãn đk)
Vậy a = 0
\(18M=\frac{36}{1+\sqrt{a}}\)do 36 là số chính phương nên 18M là số chính phương thì 1+\(\sqrt{a}\inƯ\left(36\right)\)chính phương
=> \(1+\sqrt{a}\in\left\{1;4;9;36\right\}\)
\(\Rightarrow a=\left\{9;64;1225\right\}\)với \(a>0;a\ne1\)